Responsive image
博碩士論文 etd-0625116-161155 詳細資訊
Title page for etd-0625116-161155
論文名稱
Title
應用二次積分控制在風力發電系統之強韌控制設計
Robust Control Design for Wind Power System with Dynamic Integral Quadratic Constraints
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-07-26
關鍵字
Keywords
風力發電系統、強韌控製理論、不確定性、最佳化控制器、二次積分限制、H∞ 最佳化控制
wind turbine generator, robust control theory, uncertainty, IQC, H∞ optimal controller
統計
Statistics
本論文已被瀏覽 5674 次,被下載 17
The thesis/dissertation has been browsed 5674 times, has been downloaded 17 times.
中文摘要
在真實生活中,風力發電系統可能受到各種因素的影響,例如外在的干擾、機器零件的耗損、重要參數的變化等,造成輸出行為並不如我們所預期的情況。本論文先以強韌控制理論的觀點來分析文獻[1]中所提出的新型風力發電系統,並建立系統的數學模型、不確定性的考量及H∞最佳化控制器的設計,再進一步探討系統電阻不匹配所造成輸出有弦波行為時,藉由二次積分限制的架構來解決這個問題。

本論文所預期達到的控制目標為風能最大功率追蹤控制和系統定轉速追蹤控制。當系統發生不匹配的情形下,我們先把原系統的系統矩陣做適當的轉換,將可能影響輸出行為的因子併入不確定性因素的一項,此時可得到一組新的系統矩陣,之後我們再利用二次積分限制的方法來規範輸出弦波的行為,並以適當的H∞最佳化控制器的設計來達到本論文的控制目標。根據實驗結果顯示,以二次積分限制方法所設計出來的控制器確實能有效抑制輸出所發生的弦波行為,使系統在發生不匹配的情況下,還是能達到良好的輸出表現。
Abstract
In the real world, a wind turbine generator system may be affected by various uncertain factors, such as external disturbances, wear loss of the individual components, variation of critical parameters, etc., which may result in unexpected reduced performance. In this thesis, we consider control design problem if a new wind turbine generator system, which was introduced in [1]. Based on the robust control point of view, we establish a mathematical model with structured uncertainties for the system. A robust control is then designed based on the H∞ norm minimization principle. Moreover, the problem caused by the resistance mismatch is also addressed and handled under the integral quadratic constraint framework.

The principle design objective considered in this thesis is to ensure the maximal power tracking and maintaining a constant rotational
speed - and hence a constant frequency of the electrical power output. In case the resistance mismatch occurs, the system equations governing the power generation are transformed in such a way that the periodic time-varying terms appearing as part of the structured uncertainties in feedback interconnection with a nominal dynamics. Integral quadratic constraints are then utilized to characterized these uncertainties and an H∞ optimal controller is designed based on the resulting robust stability criterion. The simulation results shows that the H∞ optimal controller designed by this approach renders satisfactory performance.
目次 Table of Contents
論文審定書i
誌謝ii
中文摘要iii
英文摘要iv
目錄v
符號表vii
第 1 章 緒論 1
1.1 研究背景 1
1.2 研究動機、目的與貢獻 3
1.3 論文架構 4
第 2 章 預備知識 5
2.1 帕克轉換5
2.2 線性化 6
2.3 強韌控制理論 8
2.3.1 H∞範數 8
2.3.2 小增益定理(Small-gain theorem) 8
2.3.3 不確定性 9
2.3.4 線性分式變換 9
2.3.5二次積分限制(IQC) 11
2.3.6 H∞ 最佳化控制器 12
第 3 章 風力發電系統的數學模型 13
3.1 創新型激磁式風力發電系統簡介 13
3.2 各系統微分方程式 14
3.2.1 馬達電氣方程式 14
3.2.2 發電機電氣方程式 17
3.2.3 系統的整體機械方程式 18
3.3 解決方法 19
3.3.1 消除時變項 19
3.3.2 消除非線性項 20
3.3.3 不確定性因子 23
第 4 章 控制器設計與模擬驗證 27
4.1 設計架構 27
4.2 iqc muti harmonic 37
4.3 Simulink模擬與結果 43
第 6 章 結論與未來展望 50
5.1 結論 50
5.2 未來展望 50
參考文獻 51
參考文獻 References
[1] T. L. Chern, P. L. Pan, Y. L. Chern, W. T. Chern, W. M. Lin, C. C. Cheng, J. H. Chou, and L. C. Chen, “Excitation synchronous wind power generators with maximum power tracking scheme,” IEEE Transaction on Sustainable Energy, vol. 5, no. 4, pp. 1090–1098, October 2014.
[2] C. A. Desoer and M. Vidyasagar, Feedback systems:Input-Output Properties. Academic Press, 1975.
[3] G.W.E.C, “Gobal wind report,” Tech. Rep., 2015.
[4] 經濟部能源局, “中華民國102年能源統計手冊,” 2013.
[5] 張永源, “台灣風力發電之現況與展望,” 「環保資訊」月刊第182期, 2013.
[6] 國立臺灣海洋大學, “2013台灣風能研討會摘要論文集序言,” 2013.
[7] 余勝雄, “我國風力發電現況與展望,” 台電公司電源開發處, 2010.
[8] 陳韋廷, “創新風力發電系統之激磁式同步發電機之最大功率追蹤控制,” Master’s thesis, 國立中山大學電機工程學系碩士論文, 民國101 年.
[9] B. C. Kuo, Automatic Control Systems. Prentice-Hall International, 1987, ch. 4, pp. 179–185.
[10] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery and Drive Systems. Wiley-Interscience, 2002, ch. 3, pp. 111–124.
[11] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory : A Convex Approach. Springer, 2000, ch. 7, pp. 221–224.
[12] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Prentice-Hall, 1996.
[13] B. M. Chen, Robust and H_ Control. Springer Science & Business Media, 2013.
[14] M. G. Safonov, “Stability margins of diagonally perturbed multivariable feedback systems,” in IEE Proceedings, vol. 129, 1982, pp. 251–256.
[15] J. S. Shamma, “Robustness analysis for time-varying systems,” in Decision and Control, 1992., Proceedings of the 31st IEEE Conference on. IEEE, 1992, pp. 3163–3168.
[16] Y.-R. Chen, N. C. Cheung, and J. Wu, “H∞ robust control of permanent magnet linear synchronous motor in high-performance motion system with large parametric uncertainty,” in Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, vol. 2. IEEE, 2002, pp. 535–539.
[17] J. Doyle et al., “Analysis of feedback systems with structured uncertainties,” in IEE proceedings, vol. 129, no. 6, 1982, pp. 242–250.
[18] P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, “Lmi control toolbox user’s guide. 1995,” The Mathworks, Natick, Massachusetts.
[19] A. Packard, “Gain scheduling via linear fractional transformations,” Systems & Control Letters, vol. 22, pp. 79–92, 1994.
[20] R. M. Redhefferr, “On a certain linear fractional trans transformation,” Journal of Mathematics and Physics, pp. 269–286, 1960.
[21] R. M. Redheffer, “Remarks on the basis of network,” Journal of Mathematics and Physics, pp. 237–258, 1950.
[22] L. Lessard, B. Recht, and A. Packard, “Analysis and design of optimization algorithms via integral quadratic constraints,” arXiv preprint arXiv:1408.3595, 2014.
[23] G. Leitmann, “Guaranteed asymptotic stability for some linear systems with bounded uncertainties,” Journal of Dynamic Systems, Measurement, and Control, vol. 101, no. 3, pp. 212–216, 1979.
[24] K. Glover and J. C. Doyle, “State-space formulae for all stabilizing controllers that satisfy an h∞-norm bound and relations to relations to risk sensitivity,” Systems & Control Letters, vol. 11, no. 3, pp. 167–172, 1988.
[25] A. Rantzer, “On the kalman–yakubovich–popov lemma,” Systems & Control Letters, vol. 28, no. 1, pp. 7–10, 1996.
[26] C. W. Scherer and I. E. Köse, “Robustness with dynamic iqcs: An exact state-space characterization of nominal stability with applications to robust estimation,” Automatica, vol. 44, no. 7, pp. 1666–1675, 2008.
[27] A. Tannenbaum, “Modified nevanlinna-pick interpolation and feedback stabilization of linear plants with uncertainty in the gain factor,” International journal of control, vol. 36, no. 2, pp. 331–336, 1982.
[28] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞ control,” International Journal of Robust and Nonlinear Control, vol. 4, pp. 421–448, 1994.
[29] A. Megretski and A. Rantzer, “System analysis via integral quadratic constraints,” IEEE Transactions on Automatic Control, vol. 42, no. 6, pp. 819–830, 1997.
[30] J. C. Doyle, K. Glover, P. Khargonekar, and B. A. Francis, “State-space solutions to standard H2 and H∞ control problems,” IEEE Transactions on Automatic Control, vol. 25, pp. 399–412, 1989.
[31] G. Zames, “Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Transactions on automatic control, vol. 26, no. 2, pp. 301–320, 1981.
[32] J. C. Martin and L. George, “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Trans. Autom. Control, vol. 26, no. 5, pp. 1139–1144, 1981.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code