Responsive image
博碩士論文 etd-0625116-173219 詳細資訊
Title page for etd-0625116-173219
論文名稱
Title
利用掃描穿隧顯微鏡量測高分子及鈣鈦礦太陽能電池的介面能帶及光致載子分布
Atomic-scale observation of the interfacial band alignment and photogenerated carrier distribution in polymer-based and perovskite-based solar cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
119
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-13
繳交日期
Date of Submission
2016-07-26
關鍵字
Keywords
剖面式掃描穿隧顯微鏡、光調制掃描穿隧顯微鏡、異質介面、鈣鈦礦太陽能電池、高分子太陽能電池
hetero-interface, light-modulated scanning tunneling microscopy (LM-STM), cross-sectional scanning tunneling microscopy (XSTM), polymer-based solar cells, perovskite-based solar cells
統計
Statistics
本論文已被瀏覽 5725 次,被下載 385
The thesis/dissertation has been browsed 5725 times, has been downloaded 385 times.
中文摘要
異質介面性質對於提高太陽能電池的光電轉換效率為相當重要的關鍵,深入瞭解奈米尺度下的型態分布以及相對應的電性結構將更進一步改善太陽能電池的元件效率,因此深入了解元件反應層內物質介面的電性結構將有助於瞭解電荷的產生、傳遞以及蒐集機制,對於提升高分子太陽能電池以及鈣鈦礦太陽能電池的效率表現及穩定性具有相當關鍵的重要性。
第一部分我們利用剖面式掃描穿隧顯微鏡針對典型高分子有機太陽能電池系統反應層內P3HT及PCBM的異質介面處,進行原子等級的區域性介面電子結構量測。藉由獨特剖面量測技術,我們得以直接針對施子-受子介面以及光反應層與電極介面進行原子等級的能帶變化量測。
第二部分,我們藉由光調制掃描穿隧顯微鏡針對多晶性鈣鈦礦有機太陽能電池光反應層內顆粒邊界,在光照狀態下進行奈米尺度物質組成分布分析及介面電性結構探討,藉由電性資訊我們得以第一次觀察到光致載子在空間中的分布情形以及受光激發所產生的導帶及價帶介面能帶彎曲現象。
藉由剖面式掃描穿隧顯微鏡的獨特能力,我們針對高分子(polymer)/富勒烯體(fullerene)異質接面太陽能電池進行研究,其獨特能力幫助我們能同時研究反應層垂直基板方向的成分分布以及相對應區域電性結構。更進一步,我們利用光調制掃描穿隧顯微鏡在光照狀態下針對多晶性鈣鈦礦太陽能電池反應層內進行探討,我們成功在真實空間下觀察到鈣鈦礦顆粒邊界光致載子的產生以及顆粒內部與邊界介面受到光激發所導致的導帶及價帶能帶彎曲現象。此工作利用剖面式掃描穿隧顯微鏡以及光調制掃描穿隧顯微鏡技術針對太陽能電池反應層內所探討之介面能帶變化進行分析,並進一步推測出光致載子的行為模式,對於提升高分子太陽能電池以及鈣鈦礦太陽能電池電荷分離、光致載子蒐集以及傳遞效率是相當重要的關鍵因素。
Abstract
Heterointerface properties represent a critical point to achieve high power conversion efficiency in solar cells. The ongoing improvement can be advanced when deep understanding of the nanomorphological distribution and the corresponding electronic structure can be determined. Therefore, the understanding of interfacial electronic properties inside the photoactive layer will be of crucial importance to further enhance the charge generation, transport, and collection, and the corresponding device performances and stabilities of polymer-based and perovskite-based solar cells.
In the first part, we demonstrate cross-sectional scanning tunneling microscopy and spectroscopy (XSTM/S) measurements to direct visualize the atomic-scale interfacial band alignment across the film thickness in the model system of polymer-based solar cells, i.e. phase segregated blends of poly(3-hexylthiophene) (P3HT)/ [6,6]-phenyl C61 butyric acid methyl ester (PCBM). We were able to achieve the direct observation of the interfacial band mappings at the donor (P3HT)/acceptor (PCBM) interface and at the interface between the photoactive layer and the anode modification layer with an atomic-scale resolution.
The second part, the light-modulated scanning tunneling microscopy (LM-STM) was utilized to reveal the correlation of the nanoscaled compositional distributions and interfacial electronic structures at grain boundaries of polycrystalline CH3NH3PbI3 perovskite grains under light illumination, which enables us to directly obtain the mapping images of photogenerated carriers of electrons and holes and the photoinduced interfacial band bending of both the valence band and conduction band for the first time.
The unique advantages of using XSTM to investigate polymer/fullerene bulk heterojunction solar cells allow us to observe simultaneously the quantitative link between the vertical morphologies and the corresponding local electronic structures. Furthermore, the LM-STM is utilized to explore the real-space observation of photoinduced carrier generation and interfacial band bending at grain boundaries of perovskite crystals under light illumination. The direct observation of the interfacial band alignment inside the photoactive layer infers that the photogenerated carriers’ behavior, which is crucial for improving the efficiencies of the charge separation, collection and transportation for polymer-based and perovskite-based solar cells.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
中文摘要 v
Abstract vii
Chapter 1. Introduction 1
Chapter 2. Experimental instruments and methods 7
2.1 Principle of scanning tunneling microscopy (STM) 7
2.2 Scanning tunneling spectroscopy (STS) 9
2.3 Cross-sectional scanning tunneling microscopy (X-STM) 11
2.4 Cross-sectional sample preparation 12
2.5 Light-modulated scanning tunneling microscopy (LM-STM) 14
2.6 Experimental set up of LM-STM 16
2.7 Normalized dI/dV 19
2.8 Determination of the band edges 20
Chapter 3. P3HT:PCBM hybrid solar cells 22
3.1 Introduction 22
3.2 Sample preparation of P3HT:PCBM organic solar cells 26
3.3 STM result and discussion 27
3.3.1 Typical cross-sectional STM topography image 27
3.3.2 Specific electronic characteristics 29
3.3.3 Cross-sectional STM topography and normalized dI/dV image 32
3.3.4 Analysis of interfacial band mapping across P3HT/PCBM interface 40
3.3.5 Interfacial electronic band mapping across PEDOT:PSS/P3HT:PCBM interface 47
3.3.6 Schematic energy band diagrams 52
3.4 Summery 53
Chapter 4. Perovskite-based solar cells 54
4.1 Introduction 54
4.2 Sample preparation of the perovskite-based solar cells 57
4.3 STM results and discussion 59
4.3.1 Sample information 59
4.3.2 Light-modulated scanning tunneling microscopy measurements in the dark situation 66
4.3.3 Real-space observation of the photoinduced charge transfer and band bending at the grain boundaries 74
4.3.4 Imaging of the band alignment of Grain A and Grain B perovskites in dark and with illuminated situations 83
4.3.5 The dependence of the thickness of the PbI2 passivation layers on ∆ED 86
4.4 Summery 88
Chapter 5. Conclusions 89
Reference 91
List of publications 98
參考文獻 References
[1] G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science 270, 1789-1791 (1995).
[2] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Appl. Phys. Lett. 78, 841-843 (2001).
[3] J. L. Delgado, P. A. Bouit, S. Filippone, M. A. Herranz and N. Martin, Chem. Commun. 46, 4853-4865 (2010).
[4] M. Reyes-Reyes, K. Kim and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
[5] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photon. 3, 297-302 (2009).
[6] C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater. 11, 15-26 (2001).
[7] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, Nature 376, 498-500 (1995).
[8] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 258, 1474-1476 (1992).
[9] F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater. 13, 85-88 (2003).
[10] W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct. Mater. 15, 1617-1622 (2005).
[11] W. Zhu, N. Minami, S. Kazaoui and Y. Kim, J. Mater. Chem. 14, 1924-1926 (2004).
[12] L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend and J. D. MacKenzie, Science 293, 1119-1122 (2001).
[13] C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen and S. Sariciftci, Chem. Phys. Lett. 340, 232-236 (2001).
[14] N.-G. Park, J. Phys. Chem. Lett. 4, 2423-2429 (2013).
[15] H. J. Snaith, J. Phys. Chem. Lett. 4, 3623-3630 (2013).
[16] H.-S. Kim, S. H. Im and N.-G. Park, J. Phys. Chem. C 118, 5615-5625 (2014).
[17] G. Hodes and D. Cahen, Nat. Photon. 8, 87-88 (2014).
[18] R. F. Service, Science 344, 458-458 (2014).
[19] S. Kazim, M. K. Nazeeruddin, M. Grätzel and S. Ahmad, Angew. Chem. Int. Ed. 53, 2812-2824 (2014).
[20] M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photon. 8, 506-514 (2014).
[21] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovolt. Res. Appl. 23, 1-9 (2015).
[22] H. S. Jung and N.-G. Park, Small 11, 10-25 (2015).
[23] Z. Cheng and J. Lin, CrystEngComm 12, 2646-2662 (2010).
[24] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc. 131, 6050-6051 (2009).
[25] J. S. Yun, A. Ho-Baillie, S. Huang, S. H. Woo, Y. Heo, J. Seidel, F. Huang, Y. B. Cheng and M. A. Green, J. Phys. Chem. Lett. 6, 875-880 (2015).
[26] Y. Yan, C. S. Jiang, R. Noufi, S. H. Wei, H. R. Moutinho and M. M. Al-Jassim, Phys. Rev. Lett. 99, 235504 (2007).
[27] M. Kawamura, T. Yamada, N. Suyama, A. Yamada and M. Konagai, J. J. Appl. Phys. 49, 062301 (2010).
[28] A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell and M. D. McGehee, Mater. Today 10, 28-33 (2007).
[29] S. Günes, H. Neugebauer and N. S. Sariciftci, Chem. Rev. 107, 1324-1338 (2007).
[30] W. J. Potscavage, A. Sharma and B. Kippelen, Acc. Chem. Res. 42, 1758-1767 (2009).
[31] G. F. Dibb, F. C. Jamieson, A. Maurano, J. Nelson and J. R. Durrant, J. Phys. Chem. Lett. 4, 803-808 (2013).
[32] G. Binnig & H. Rohrer, Helv. Phys. Acta 55, 726-735 (1982).
[33] G. Binnig and H. Rohrer, Surf. Sci. 152, 17-26 (1985).
[34] G. Binnig and H. Rohrer, IBM J. Res. Dev. 30, 355-369 (1986).
[35] Y. P. Chiu, Y. T. Chen, B. C. Huang, M. C. Shih, J. C. Yang, Q. He, C. W. Liang, J. Seidel, Y. C. Chen, R. Ramesh and Y. H. Chu, Adv. Mater. 23, 1530-1534 (2011).
[36] Y. P. Chiu, B. C. Huang, M. C. Shih, J. Y. Shen, P. Chang, C. S. Chang, M. L. Huang, M. H. Tsai, M. Hong and J. Kwo, Appl. Phys. Lett. 99, 212101 (2011).
[37] Y. P. Chiu, M. C. Shih, B. C. Huang, J. Y. Shen, M. L. Huang, W. C. Lee, P. Chang, T. H. Chiang, M. Hong and J. Kwo, Microelectron. Eng. 88, 1058-1060 (2011).
[38] Y.-P. Chiu, B.-C. Chen, B.-C. Huang, M.-C. Shih and L.-W. Tu, Appl. Phys. Lett. 96, 082107 (2010).
[39] B. C. Huang, Y. T. Chen, Y. P. Chiu, Y. C. Huang, J. C. Yang, Y. C. Chen and Y. H. Chu, Appl. Phys. Lett. 100, 122903 (2012).
[40] B. C. Huang, Y. P. Chiu, P. C. Huang, W. C. Wang, V. T. Tra, J. C. Yang, Q. He, J. Y. Lin, C. S. Chang and Y. H. Chu, Phys. Rev. Lett. 109, 246807 (2012).
[41] M. C. Shih, B. C. Huang, C. C. Lin, S. S. Li, H. A. Chen, Y. P. Chiu and C. W. Chen, Nano Lett. 13, 2387-2392 (2013).
[42] Y. P. Chiu, B. C. Huang, M. C. Shih, P. C. Huang and C. W. Chen, J. Phys.: Condens. Matter 27, 343001 (2015).
[43] J. E. Rowe, S. B. Christman and H. Ibach, Phys. Rev. Lett. 34, 874-877 (1975).
[44] W. W. Pai, T. Y. Wu, C. H. Lin, B. X. Wang, Y. S. Huang and H. L. Chou, Sur. Sci. 601, L69-L72 (2007).
[45] S. Yoshida, Y. Kanitani, R. Oshima, Y. Okada, O. Takeuchi and H. Shigekawa, Phys. Rev. Lett. 98, 026802 (2007).
[46] O. Takeuchi, S. Yoshida and H. Shigekawa, Appl. Phys. Lett. 84, 3645-3647 (2004).
[47] R. J. Hamers and K. Markert, Phys. Rev. Lett. 64, 1051-1054 (1990).
[48] R. J. Hamers and K. Markert, J. Vac. Sci. Technol. A 8, 3524-3530 (1990).
[49] R. M. Feenstra, Phys. Rev. B 50, 4561-4570 (1994).
[50] A. R. Smith, S. Gwo, K. Sadra, Y. C. Shih, B. G. Streetman and C. K. Shih, J. Vac. Sci. Technol. B 12, 2610-2615 (1994).
[51] M. Hjort, J. Wallentin, R. Timm, A. A. Zakharov, U. Håkanson, J. N. Andersen, E. Lundgren, L. Samuelson, M. T. Borgström and A. Mikkelsen, ACS Nano 6, 9679-9689 (2012).
[52] H. J. Liu, J. H. G. Owen and K. Miki, J. Phys.: Condens. Matter 24, 095005 (2012).
[53] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater. 4, 864-868 (2005).
[54] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Nat. Photon. 3, 649-653 (2009).
[55] R. H. Friend, G. J. Denton, J. J. M. Halls, N. T. Harrison, A. B. Holmes, A. Köhler, A. Lux, S. C. Moratti, K. Pichler, N. Tessler, K. Towns and H. F. Wittmann, Solid State Commun. 102, 249-258 (1997).
[56] T. J. Savenije, J. M. Warman and A. Goossens, Chem. Phys. Lett. 287, 148-153 (1998).
[57] S. R. Scully and M. D. McGehee, J. Appl. Phys. 100, 034907 (2006).
[58] C. Groves, O. G. Reid and D. S. Ginger, Acc. Chem. Res. 43, 612-620 (2010).
[59] E. J. Spadafora, R. Demadrille, B. Ratier and B. Grevin, Nano Lett. 10, 3337-3342 (2010).
[60] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang and Y. Yang, Adv. Funct. Mater. 17, 1636-1644 (2007).
[61] M. Dante, J. Peet and T.-Q. Nguyen, J. Phys. Chem. C 112, 7241-7249 (2008).
[62] H. Hoppe, T. Glatzel, M. Niggemann, A. Hinsch, M. C. Lux-Steiner and N. S. Sariciftci, Nano Lett. 5, 269-274 (2005).
[63] T. A. Bull, L. S. C. Pingree, S. A. Jenekhe, D. S. Ginger and C. K. Luscombe, ACS Nano 3, 627-636 (2009).
[64] B. Grévin, P. Rannou, R. Payerne, A. Pron and J. P. Travers, J. Chem. Phys. 118, 7097-7102 (2003).
[65] K. Maturová, S. S. van Bavel, M. M. Wienk, R. A. J. Janssen and M. Kemerink, Adv. Funct. Mater. 21, 261-269 (2011).
[66] S. F. Alvarado, W. Rieβ, P. F. Seidler and P. Strohriegl, Phys. Rev. B 56, 1269-1278 (1997).
[67] R. Rinaldi, R. Cingolani, K. M. Jones, A. A. Baski, H. Morkoc, A. Di Carlo, J. Widany, F. Della Sala and P. Lugli, Phys. Rev. B 63, 075311 (2001).
[68] X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels and R. A. J. Janssen, Nano Lett. 5, 579-583 (2005).
[69] S. S. v. Bavel, E. Sourty, G. d. With and J. Loos, Nano Lett. 9, 507-513 (2009).
[70] R. M. Feenstra, W. A. Thompson and A. P. Fein, Phys. Rev. Lett. 56, 608-611 (1986).
[71] R. J. Hamers, R. M. Tromp and J. E. Demuth, Phys. Rev. Lett. 56, 1972-1975 (1986).
[72] J. A. Stroscio, R. M. Feenstra and A. P. Fein, Phys. Rev. Lett. 57, 2579-2582 (1986).
[73] J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805-813 (1985).
[74] A. A. Herzing, L. J. Richter and I. M. Anderson, J. Phys. Chem. C 114, 17501-17508 (2010).
[75] L. F. Drummy, R. J. Davis, D. L. Moore, M. Durstock, R. A. Vaia and J. W. P. Hsu, Chem. Mater. 23, 907-912 (2011).
[76] S. F. Alvarado, P. F. Seidler, D. G. Lidzey and D. D. C. Bradley, Phys. Rev. Lett. 81, 1082-1085 (1998).
[77] J.-L. Brédas, J. Cornil and A. J. Heeger, Adv. Mater. 8, 447-452 (1996).
[78] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, Adv. Funct. Mater. 11, 374-380 (2001).
[79] R. J. Davis, M. T. Lloyd, S. R. Ferreira, M. J. Bruzek, S. E. Watkins, L. Lindell, P. Sehati, M. Fahlman, J. E. Anthony and J. W. P. Hsu, J. Mater. Chem. 21, 1721-1729 (2011).
[80] J. D. Roehling, K. J. Batenburg, F. B. Swain, A. J. Moulé and I. Arslan, Adv. Funct. Mater. 23, 2115-2122 (2013).
[81] B. A. Collins, J. R. Tumbleston and H. Ade, J. Phys. Chem. Lett. 2, 3135-3145 (2011).
[82] D. Chirvase, J. Parisi, J. C. Hummelen and V. Dyakonov, Nanotechnology 15, 1317-1323 (2004).
[83] Y. Kanai and J. C. Grossman, Nano Lett. 7, 1967-1972 (2007).
[84] J. J. M. van der Holst, M. A. Uijttewaal, B. Ramachandhran, R. Coehoorn, P. A. Bobbert, G. A. de Wijs and R. A. de Groot, Phys. Rev. B 79, 085203 (2009).
[85] C.-W. Liang, W.-F. Su and L. Wang, Appl. Phys. Lett. 95, 133303 (2009).
[86] Z.-L. Guan, J. B. Kim, H. Wang, C. Jaye, D. A. Fischer, Y.-L. Loo and A. Kahn, Org. Electron. 11, 1779-1785 (2010).
[87] C. Wehrenfennig, M. Liu, H. J. Snaith, M. B. Johnston and L. M. Herz, J. Phys. Chem. Lett. 5, 1300-1306 (2014).
[88] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum and Y. M. Lam, Energy Environ. Sci. 7, 399-407 (2014).
[89] M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photon. 8, 506-514 (2014).
[90] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science 342, 341-344 (2013).
[91] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc. 136, 622-625 (2014).
[92] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang and A. D. Mohite, Science 347, 522-525 (2015).
[93] M. Saliba, K. W. Tan, H. Sai, D. T. Moore, T. Scott, W. Zhang, L. A. Estroff, U. Wiesner and H. J. Snaith, J. Phys. Chem. C 118, 17171-17177 (2014).
[94] M. I. Dar, N. Arora, P. Gao, S. Ahmad, M. Grätzel and M. K. Nazeeruddin, Nano Lett. 14, 6991-6996 (2014).
[95] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, Nat. Commun. 4, 2761 (2013).
[96] P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S. T. Williams, X.-K. Xin, J. Lin and A. K. Y. Jen, Adv. Mater. 26, 3748-3754 (2014).
[97] C.-Y. Chang, C.-Y. Chu, Y.-C. Huang, C.-W. Huang, S.-Y. Chang, C.-A. Chen, C.-Y. Chao and W.-F. Su, ACS Appl. Mater. Interfaces 7, 4955-4961 (2015).
[98] N. H. Nickel, N. M. Johnson and W. B. Jackson, Appl. Phys. Lett. 62, 3285-3287 (1993).
[99] M. L. Terry, A. Straub, D. Inns, D. Song and A. G. Aberle, Appl. Phys. Lett. 86, 172108 (2005).
[100] M. Hafemeister, S. Siebentritt, J. Albert, M. C. Lux-Steiner and S. Sadewasser, Phys. Rev. Lett. 104, 196602 (2010).
[101] C. S. Jiang, R. Noufi, K. Ramanathan, J. A. AbuShama, H. R. Moutinho and M. M. Al-Jassim, Appl. Phys. Lett. 85, 2625-2627 (2004).
[102] I. Visoly-Fisher, S. R. Cohen, K. Gartsman, A. Ruzin and D. Cahen, Adv. Funct. Mater. 16, 649-660 (2006).
[103] J. B. Li, V. Chawla and B. M. Clemens, Adv. Mater. 24, 720-723 (2012).
[104] G. Y. Kim, A. R. Jeong, J. R. Kim, W. Jo, D.-H. Son, D.-H. Kim and J.-K. Kang, Sol. Energy Mater. Sol. Cells 127, 129-135 (2014).
[105] C. S. Jiang, I. L. Repins, C. Beall, H. R. Moutinho, K. Ramanathan and M. M. Al-Jassim, Sol. Energy Mater. Sol. Cells 132, 342-347 (2015).
[106] B. Yang, O. Dyck, J. Poplawsky, J. Keum, A. Puretzky, S. Das, I. Ivanov, C. Rouleau, G. Duscher, D. Geohegan and K. Xiao, J. Am. Chem. Soc. 137, 9210-9213 (2015).
[107] Y. Shao, Y. Fang, T. Li, Q. Wang, Q. Dong, Y. Deng, Y. Yuan, H. Wei, M. Wang, A. Gruverman, J. Shield and J. Huang, Energy Environ. Sci. 9, 1752-1759 (2016).
[108] E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes and D. Cahen, Nano Lett. 14, 1000-1004 (2014).
[109] Q. Chen, H. Zhou, T. B. Song, S. Luo, Z. Hong, H. S. Duan, L. Dou, Y. Liu and Y. Yang, Nano Lett. 14, 4158-4163 (2014).
[110] E. Edri, S. Kirmayer, D. Cahen and G. Hodes, J. Phys. Chem. Lett. 4, 897-902 (2013).
[111] V. W. Bergmann, S. A. Weber, F. Javier Ramos, M. K. Nazeeruddin, M. Gratzel, D. Li, A. L. Domanski, I. Lieberwirth, S. Ahmad and R. Berger, Nat. Commun. 5, 5001 (2014).
[112] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater. 13, 897-903 (2014).
[113] M.-C. Shih, S.-S. Li, C.-H. Hsieh, Y.-C. Wang, H.-D. Yang, Y.-P. Chiu, C.-S. Chang and C.-W. Chen. (Reviewed)
[114] J. H. Im, I. H. Jang, N. Pellet, M. Gratzel and N. G. Park, Nat. Nanotechnology 9, 927-932 (2014).
[115] W. A. Laban and L. Etgar, Energy Environ. Sci. 6, 3249-3253 (2013).
[116] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Gratzel and N. G. Park, Sci. Rep. 2, 591 (2012).
[117] E. Mosconi, A. Amat, M. K. Nazeeruddin, M. Grätzel and F. De Angelis, J. Phys. Chem. C 117, 13902-13913 (2013).
[118] D. H. Cao, C. C. Stoumpos, C. D. Malliakas, M. J. Katz, O. K. Farha, J. T. Hupp and M. G. Kanatzidis, APL Mater. 2, 091101 (2014).
[119] P. Schulz, E. Edri, S. Kirmayer, G. Hodes, D. Cahen and A. Kahn, Energy Environ. Sci. 7, 1377-1381 (2014).
[120] R. Ahuja, H. Arwin, A. Ferreira da Silva, C. Persson, J. M. Osorio-Guillén, J. Souza de Almeida, C. Moyses Araujo, E. Veje, N. Veissid, C. Y. An, I. Pepe and B. Johansson, J. Appl. Phys. 92, 7219-7224 (2002).
[121] H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science 345, 542-546 (2014).
[122] J. P. Correa Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. Srimath Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel and A. Hagfeldt, Energy Environ. Sci. 8, 2928-2934 (2015).
[123] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar and T. C. Sum, Science 342, 344-347 (2013).
[124] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science 345, 542-546 (2014).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code