Responsive image
博碩士論文 etd-0625117-014204 詳細資訊
Title page for etd-0625117-014204
論文名稱
Title
銅-銻-鋅三元系統相圖及銅摻雜Zn4Sb3之熱電性質
Phase diagram of ternary Cu-Sb-Zn system and thermoelectric properties of Cu doped Zn4Sb3 alloys
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
238
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-28
繳交日期
Date of Submission
2017-07-25
關鍵字
Keywords
等溫橫截面圖、液相線投影圖、六角菱面體、Zn4Sb3、熱電材料
rhombohedric, isothermal section, Cu-Sb-Zn thermoelectric materials, liquidus projection, Zn4Sb3, Thermoelectric
統計
Statistics
本論文已被瀏覽 5711 次,被下載 49
The thesis/dissertation has been browsed 5711 times, has been downloaded 49 times.
中文摘要
現今世界對能源的需求日益增加,綠色能源之議題因此受到世人重視,而熱電材料屬於綠色能源的一環。熱電材料具直接將熱能轉換成電能之性質,能夠作為廢熱回收之裝置。在眾多熱電材料中,Zn4Sb3是具有前景的中溫型之熱電材料之一,結構為六角菱面體,具有較低的晶格熱傳導係數(κL),根據文獻內容,Zn4Sb3於溫度670K具有最高zT值1.3。本研究根據該系統之相圖資訊配製熱電合金,相圖為材料之基礎資料,表示合金於不同因素下具有不同之相,而目前尚未具有完善之Cu-Sb-Zn三元系統相圖資訊,故本實驗將致力完成Cu-Sb-Zn三元系統相圖。本實驗之研究目標包括(1)以實驗方式建構Cu-Sb-Zn三元系統液相線投影圖、(2)以實驗方式建構Cu-Sb-Zn三元系統350oC之等溫橫截面圖、(3)製備二元系統之熱電材料,探討Zn含量對Zn4Sb3熱電性質之影響、(4)製備三元系統之熱電材料,探討不同量之Cu摻雜對Zn4Sb3合金之熱電性質的影響性。
根據研究結果,於Cu-Sb-Zn系統液相線投影圖由實驗分析,存在十個首要析出相區,而三元系統相圖之邊界由二元子系統相圖建構,於Cu-Sb-Zn系統350oC之等溫橫截面圖,Zn4Sb3二元合金可穩定存在於350oC,固溶範圍為0.1-2.4at%Cu與57.1-57.8at%Zn,可確定三個單相區、九個兩相區、八個三相區。熱電性質量測部分,探討二次相對Zn4Sb3之影響,二元合金中,Zn4.06Sb2.94合金於657K時zT值可達0.9,而Cu摻雜Zn4Sb3之合金中,(Zn4Sb3)0.93Cu0.07具最好熱電性質,於658K時zT值達到0.8。
Abstract
Energy shortage has become one the most critical issues, and therefore the development of thermoelectric (TE) materials, which allows the direct conversion between waste heat and electricity, has attracted growing attentions. Among all types of thermoelectric materials, the hexagonal rhombohedric β-Zn4Sb3, which is constituted by cost-effective, earth-abundant and non-toxic elements, features with intrinsically low lattice thermal conductivity, owing to the disordering of Zn-interstitials, and has been viewed as a promising mid-temperature TE material. Phase diagram provides fundamental yet essential information, and therefore the 350˚C isothermal section and liquidus projection of ternary Cu-Sb-Zn system are constructed in this study. Various ternary alloys are thermally-equilibrated at 350oC for 45 days to clarify the phase relations, with an emphasis upon the homogeneity rang of Zn4Sb3 phase at elevated temperature. As for the liquidus projection, the ternary alloys are either air-cooled or water-quenched, to investigate the solidification behaviors of ternary Cu-Sb-Zn system.
Apart from the phase diagram determinations, the selective p-type Zn4-xSb3 alloys with varying Zn/Sb ratios were grown by Bridgman method, and their thermoelectric properties were measured. Alloy Zn4.06Sb2.94 featured with nano-sized Zn inclusion reaches a peak value of zT~0.9 at 657K, showing 112% enhancement compared with that of the stoichiometric Zn4Sb3 (zT~0.8). In addition, the Cu-doped Zn4-xSb3 alloys are prepared, and the maximum zT of 0.8 is obtained in (Zn4Sb3)0.93Cu0.07 at 659 K, presumably attributed to the existence of secondary Cu5Zn8 that improves the electrical conductivity.
目次 Table of Contents
致謝 ................................................................................................................................................. i
摘要 ................................................................................................................................................ ii
Abstract ........................................................................................................................................ iii
目錄 ............................................................................................................................................... iv
圖目錄 ....................................................................................................................................... viii
表目錄 ..................................................................................................................................... xviii
一、前言 ...................................................................................................................................... 1
二、文獻回顧 ............................................................................................................................ 6
2.1熱電元件 ....................................................................................................... 6
2.2 β-Zn4Sb3熱電材料 ....................................................................................... 8
2.3 相圖 ............................................................................................................ 11
2.4 Cu-Sb二元子系統 ..................................................................................... 13
2.5 Sb-Zn二元子系統 ...................................................................................... 15
2.6 Cu-Zn二元子系統 ..................................................................................... 17
三、實驗方法 ......................................................................................................................... 21
v
3.1 Cu-Sb-Zn三元系統之350oC等溫橫截面圖............................................ 21
3.2 Cu-Sb-Zn三元系統液相線投影圖 ............................................................ 23
3.3 Cu-Sb-Zn三元系統之熱電性質量測........................................................ 24
四、結果與討論 .................................................................................................................... 27
4.1 Cu-Sb-Zn三元系統之350oC等溫橫截面圖............................................ 27
4.1.1 Zn4Sb3-CuZn5-Zn三相區 ........................................................................ 35
4.1.2 CuZn5-Zn4Sb3兩相區 .............................................................................. 39
4.1.3 Cu5Zn8-CuZn5-Zn4Sb3三相區 ................................................................. 46
4.1.4 Cu5Zn8-Zn4Sb3兩相區 ............................................................................. 50
4.1.5 Cu5Zn8-ZnSb兩相區 ............................................................................... 52
4.1.6 Cu5Zn8-ZnSb-Cu5Sb2Zn3三相區 ............................................................. 58
4.1.7 Cu5Zn8-Cu5Sb2Zn3兩相區 ....................................................................... 67
4.1.8 Cu5Sb8-CuZn-Cu5Sb2Zn3三相區 ............................................................ 70
4.1.9 Cu5Sb2Zn3 單相區 .................................................................................. 73
4.1.10 ZnSb-Cu5Sb2Zn3兩相區 ........................................................................ 75
4.1.11 Cu3SbZn單相區 .................................................................................... 77
4.1.12 CuZn-Cu3SbZn兩相區 ......................................................................... 79
vi
4.1.13 Cu5Sb2Zn3-Cu3SbZn-ZnSb三相區 ....................................................... 81
4.1.14 Cu-Cu3SbZn兩相區 .............................................................................. 83
4.1.15 Cu-Cu2Sb兩相區 .................................................................................. 85
4.1.16 Cu2Sb-Cu-Cu3SbZn 三相區 ................................................................. 90
4.1.17 Cu2Sb-Cu3SbZn兩相區 ........................................................................ 92
4.1.18 Cu2Sb-ZnSb-Cu3SbZn三相區 .............................................................. 95
4.1.19 Cu2Sb單相區 ...................................................................................... 100
4.1.20 Cu2Sb-Sb-ZnSb三相區 ....................................................................... 102
4.1.21 Cu-Sb-Zn三元系統之350oC等溫橫截面圖結果 ............................ 108
4.2 Cu-Sb-Zn三元系統液相線投影圖 .......................................................... 110
4.2.1 CuZn5首要析出相區............................................................................. 114
4.2.2 Zn3Sb2首要析出相區 首要析出相區 ............................................................................ 125
4.2.3 Zn4Sb3首要析出相區 首要析出相區 ............................................................................ 128
4.2.4 Cu5Zn8首要析出相區 首要析出相區 ........................................................................... 131
4.2.5 CuZn首要析出相區 首要析出相區 首要析出相區 ............................................................................. 139
4.2.6 Cu5Sb2Zn3首要析出相區 首要析出相區 ...................................................................... 142
4.2.7 Cu首要析出相區 首要析出相區 首要析出相區 .................................................................................. 151
4.2.8 ZnSb首要析出相區 首要析出相區 首要析出相區 .............................................................................. 155
vii
4.2.9 Cu2Sb首要析出相區 首要析出相區 首要析出相區 首要析出相區 ............................................................................ 160
4.2.10 Sb首要析出相區 首要析出相區 首要析出相區 ................................................................................ 170
4.2.10 Cu-Sb-Zn三元系統液相線投影圖結果............................................. 175
4.3 Cu-Sb-Zn 三元系統之熱電性質 ............................................................. 176
4.3.1 Zn-Sb二元合金之熱電性質 ................................................................. 179
4.3.2 (Zn4Sb3)1-xCux之熱電性質.................................................................... 189
4.3.4 Zn4-x Sb3Cux之熱電性質....................................................................... 199
五、總結 ................................................................................................................................. 210
六、參考文獻 ....................................................................................................................... 214
參考文獻 References
1. J.-F. Li, W.-S. Liu, L.-D. Zhao, M. Zhou, “High-performance nanostructured thermoelectric materials”, NPG Asia Mater, Vol.2(4), pp.152-158, (2010).
2. R.Z. -Feng, L.W. -Shu, “The State-of-the-art and Future Trend of the Study Thermoelectric Materials”, Journal of Xihua University Natural Science, Vol.32, pp.1-8, (2013).
3. G.J. Snyder, E.S. Toberer, “Complex thermoelectric materials”, Nature Materials, Vol.7, pp.105-114, (2008).
4. M.G. Kanatzidis, “Nanostructured Thermoelectrics: The New Paradigm”, Chem. Mater, Vol.22, pp.648-659, (2010).
5. L.E. Bell, “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems”, Science, Vol.321, pp.1457-1461, (2008).

6. J. Yang, “Potential Applications of Thermoelectric Waste Heat Recovery in the Automotive Industry”, International Conference on Thermoelectrics, (2005).

7. S.K. Bux, J.-P. Fleurial and R.B. Kaner, “Nanostructured materials for thermoelectric applications”, Chemical Communications, Vol.46, pp.8311-8324, (2010).

8. P. Vaqueiro, A.V. Powell, “Recent developments in nanostructured materials for high-performance thermoelectrics”, Journal of Materials Chemistry, Vol.20, pp.9577-9584, (2010).

9. F.J. DiSalvo, “Thermoelectric Cooling and Power Generation”, Science, Vol.285, pp.703-706, (1999).

10. A.J. Minnich, M.S. Dresselhaus, Z.F. Ren, G. Chen, “Bulk nanostructured thermoelectric materials: current research and future prospects”, Energy and Environmental Science, Vol.2, pp.466-479, (2009).

11. 朱旭山, 電材料與元件之原理與應用, 電子與材料雜誌, 第22期, pp.78-89.

12. G.S. Nolas, J. Poon, M. Kanatzidis, “Recent Developments in Bulk Thermoelectric Materials”, Materials Research Society Bulletin, Vol.31, pp.199-205, (2006).

13. M.S. El-Genk, H.H. Saber, T. Caillat, “Efficient segmented thermoelectric unicouples for space power applications”, Energ Convers Manage, Vol.44, pp.1755-1772, (2003).

14. http://www.cpfs.mpg.de/2151574/thermor_effects

15. J.H. Ahn, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, H.W. Lee, Y.J. Shim, “Thermoelectric properties of Zn4Sb3 prepared by hot pressing”, Materials Research Bulletin, Vol.46, pp.1490-1495, (2011).

16. D. Tang, W. Zhao, J. Yu, P. Wei, H. Zhou, W. Zhu, Q. Zhang, “Crystal structure, chemical bond and enhanced performance of β-Zn4Sb3 compounds with interstitial indium dopant”, Journal of Alloys and Compounds, Vol.601, pp.50-56, (2014).

17. P.-C. Wei, C.-C. Yang, J.-L. Chen, R. Sankar, C.-L. Chen, C.-H. Hsu, C.-C. Chang, C.-L. Chen, C.-L. Dong, F.-C. Chou, K.-H. Chen, M.-K. Wu, Y.-Y. Chen, “Enhancement of thermoelectric figure of merit in β-Zn4Sb3 by indium doping control”, Applied Physics Letters, Vol.107, pp.123902-1-123902-5, (2015).

18. T. Caillat, J.P. Fleurial, A. Borahchevsky, “Preparation and Thermoelectric Properties of Semiconducting Zn4Sb3”, Journal of physics and Chemistry of Solids, Vol.58, pp.1119-1125, (1997).

19. J.L. Cui, H. Fu, D.Y. Chen, L.D. Mao, X.L. Liu, W. Yang, “Thermoelectric properties of Cu-added Zn–Sb based alloys with multi-phase equilibrium”, Materials Characterization, Vol.60, pp.824-828, (2009).

20. S.Wang, H.Li, D.Qi, W. Xie, X. Tang, “Enhancement of the thermoelectric performance of -Zn4Sb3 by in situ nanostructures and minute Cd-doping”, Acta Materialia, Vol.59, pp.4805-4817, (2011).

21. W. Li , L. Zhou, Y. Li , J. Jiang, G. Xu, “Thermoelectric properties of hot-pressed Zn4Sb3−xTex”, Journal of Alloys and Compounds,Vol.486, pp.335-337, (2009).

22. J.H. Sun, X.Y. Qin, H.X. Xin, D. Li, L. Pan, C.J. Song, J. Zhang, R.R. Sun, Q.Q. Wang, Y.F. Liu, “Synthesis and thermoelectric properties of Zn4Sb3/Bi0.5Sb1.5Te3 bulk nanocomposites”, Journal of Alloys and Compounds, Vol.500, pp.215-219, (2010).

23. R. Carlini, D. Marré, I. Pallecchi, R. Ricciardi, G. Zanicchi, “Thermoelectric properties of Zn4Sb3 intermetallic compound doped with Aluminum and Silver”, Intermetallics, Vol.45, pp.60-64, (2014).

24. J.L. Cui , L.D. Mao, D.Y. Chen , X. Qian , X.L. Liu , W. Yang, “Effects of a Cu-contained compound on the microstructures and thermoelectric properties of Zn–Sb based alloys”, Current Applied Physics, Vol.9, pp.713-716, (2009).

25. D. Minic, D. Manasijevic, V. Cosovic, N. Talijan, Z. Zivkovic, D. Zivkovic, M. Premovic, “Experimental investigation and thermodynamic prediction of the Cu–Sb–Zn phase diagram”, Journal of Alloys and Compounds, Vol.517, pp.31-39, (2012).

26. 巫振榮, “熱電元件應用”, 奈米通訊, 第20卷, pp.32-35, (2013).

27. 黃振東, 徐振庭, “熱電材料”, 科學發展, 第486期, pp.48-53, (2013)

28. J.-Y. Hwang, M.-W. Oh, K.H. Lee and S.W. Kim, “Strong correlation between the crystal structure and the thermoelectric properties of pavonite homologue Cux+yBi5-yCh8 (Ch = S or Se) compounds”, Journal of Materials Chemistry C, Vol.3, pp.11271-11285, (2015).

29. Y. Mozharivskyj, A.O. Pecharsky, S. Bud’ko, G. J. Miller, “A Promising Thermoelectric Material: Zn4Sb3 or Zn6-δSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-δSb”, Chemistry of Materials, Vol.16, pp.1580-1589, (2004).

30. Z. Chao, F. Youjian, S. Zhongqi, L. Guiwu, Q. Guanjun, “Preparation and Properties of SiC/β-Zn4Sb3 Thermoelectric Composites”, Journal of The Chinese Ceramic Society, Vol.6, pp.806-810, (2016).

31. B.B. Iversen, “Fulfilling thermoelectric promises: β-Zn4Sb3 from materials research to power generation”, Journal of Materials Chemistry, Vol.20, pp.10778-10787, (2010).

32. http://materials.blog.sohu.com/153079311.html

33. http://www.jxgcs.com.cn/gongyi/gongyi014-8405.htm

34. H. Okamoto, O., “Comment on Cu-Sb (Copper-Antimony)”, Journal of Phase Equilibria, Vol.16, pp.472-472, (1995).

35. F. Adjadj, E.D. Belbacha, and M. Bouharkat, “Differential calorimetric analysis of the binary system Sb-Zn”, Journal of Alloys and Compounds, Vol.430, pp. 8591, (2007).

36. M. Kowalski, and P.J. Spencer, “Thermodynamic Reevaluation of the Cu-Zn System”, Journal of Phase Equilibria, Vol.14, pp.432-438, (1993).

37. Q. Qiong, T.X. -Feng, X. Cong, Z.W. -Yu, Z.Q. -Jie, “Effect of excessive Zn on the thermoelectric properties of b-Zn4Sb3”, Acta Physica Sinica, Vol.55, pp5540-5544, (2006).

38. L.T. -Zhang, M. Tsutsui, K. Ito, M. Yamaguchi, “Effects of ZnSb and Zn inclusions on the thermoelectric properties of b-Zn4Sb3”, Journal of Alloys and Compounds, Vol.358, pp.252-256, (2003).

39. http://www.euralliage.com/cuzn5_english.htm

40. A. Wrona, K. Bilewska, J. Mazur, M. Lis, M. Staszewski, “Properties of thermoelectric Zn–Sb type material directly synthesized by spark plasma sintering”, Journal of Alloys and Compounds, Vol.616, pp.350-355, (2014).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code