Responsive image
博碩士論文 etd-0625117-120642 詳細資訊
Title page for etd-0625117-120642
論文名稱
Title
單離子導體之奈米纖維應用於鋰離子電池電解質
Nanofiber electrolytes of Single-Ion Conductors for lithium battery
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-23
繳交日期
Date of Submission
2017-07-25
關鍵字
Keywords
靜電紡絲、奈米纖維、鋰離子電池、高分子電解質、單離子導電電解質
lithium-ion batteries, nanofibers, single-ion conductor electrolyte, electrospinning, polymer electrolyte
統計
Statistics
本論文已被瀏覽 5708 次,被下載 79
The thesis/dissertation has been browsed 5708 times, has been downloaded 79 times.
中文摘要
本論文主要研究奈米不織布單離子導電電解質 (SICE) 膜在室溫環境下具有傑出的效能。與商業PP隔離膜相比,藉由lithium poly[4-styrenesulfonyl(phenylsulfonyl)imide]和聚丙烯腈的混合溶液製備的SICE膜具有優異的溶劑化特性,並且具有多孔結構可以促進鋰離子傳遞。在室溫環境下,奈米電解質膜在碳酸酯溶劑的系統中具有優良的離子導電率(3.9 × 10−3 S/cm)、電化學穩定視窗高達5.2 V (vs. Li/Li+),而離子遷移率也達0.93。此外,將奈米電解質膜與磷酸鋰鐵正極製備成半電池進行測試,發現不僅在0.2 C和0.5 C下獲得了163 mAh/g的放電容量(這是SICE迄今為止報導的最高值,並且為LiFePO4 理論電容量的95.9%),而且在2 C的充放電速率下電容量也比與商業隔膜/雙離子電解質系統高。這種令人鼓舞的創新方法,可能是未來商業電解質膜的設計和製造技術的選擇之一。
Abstract
In this study, a nonwoven nanofabric single-ion conducting electrolyte (SICE) membrane exhibiting excellent electrochemical performance in ambient environment has been fabricated. Compared to commercial polypropylene separators, the SICE membrane, fabricated via electrospinning of the hybrid solution containing lithium poly[4-styrenesulfonyl(phenylsulfonyl)imide] and polyacrylonitrile, possesses excellent solvation characteristics due to porous morphology that facilitates transportation of lithium ions. It shows superior ionic conductivity of 3.9 × 10−3 S cm−1 and a broader electrochemical window of up to 5.2 V (vs. Li/Li+) with a lithium transference number (t_(〖Li〗^+ )) of 0.93 at 30 °C under ethylene carbonate/propylene carbonate/diethyl carbonate (=3/2/5, v/v/v) solvent system. Furthermore, fabricated with this SICE membrane, the lithium ion batteries made from LiFePO4 cathode demonstrate not only a discharge capacity of 163 mAh/g at 0.2 and 0.5 C, which is the highest value reported so far for SICEs (95.9% of the theoretical capacity of LiFePO4) but also higher discharge capacities up to 2 C in comparison with the commercial separator/dual-ion salt electrolyte system. Those encouraging results with this innovative approach indicate this might be a potential candidate for the design and fabrication techniques of commercial electrolyte membranes in future.
目次 Table of Contents
目錄
論文審定書 i
論文公開授權書 ii
謝誌 iii
摘要 v
Abstract vi
目錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1-1 前言 2
1-2 研究動機 3
第二章 文獻回顧 4
2-1 鋰離子電池 5
2-1.1 一次電池和二次電池簡介 5
2-1.2 工作原理 6
2-1.3 陰極材料 7
2-1.4 陽極材料 7
2-2 電解質的介紹 8
2-2.1 液態電解質 (Liquid electrolytes) 8
2-2.2 固態高分子電解質 (Solid polymer electrolytes, SPEs) 10
2-2.3 膠態高分子電解質 (Gel Polymer Electrolytes, GPEs) 11
2-2.4 單離子導體高分子電解質
(Single-Ion Conducting Electrolytes, SICEs) 12
2-3 靜電紡絲 13
2-3.1 研究歷史 13
2-3.2 工作原理 13
2-3.3 實驗參數 14
第三章 實驗方法 15
3-1 實驗藥品材料以及器材 16
3-2 實驗步驟 19
3-2.1 單離子導體高分子合成 19
3-2.2 靜電紡絲不織布薄膜製備 23
3-2.3 磷酸鋰鐵正極材料製備 24
3-2.4 鋰離子電池組裝 25
3-3 高分子分析鑑定儀器介紹 26
3-3.1 高磁場液態核磁共振儀 (500 MHz NMR) 26
3-3.2 電噴灑質譜儀 (ESI/MS) 26
3-3.3 元素分析儀 (Element Analysis, EA) 26
3-3.4 感應耦合電漿質譜分析儀 (ICP-MS) 26
3-3.5 熱重量分析 (TGA) 26
3-3.6 凝膠滲透層析儀 (Gel Permeation Chromatograph, GPC) 27
3-3.7 解析掃描式電子顯微鏡 (SEM) 27
3-4 電化學測試儀器介紹 28
3-4.1 線性掃瞄伏安法 (LSV) 28
3-4.2 交流阻抗測試 (AC-impedance) 29
3-4.3 鋰離子遷移數分析 29
3-4.4 循環伏安法測試 (CV) 31
3-4.5 半電池充放電測試 (Charge-discharge & C-rate performance) 32
第四章 結果討論 33
4-1 單離子導體高分子之結構鑑定 34
4-1.1 高磁場液態核磁共振儀 34
4-1.2 電噴灑質譜儀 & 凝膠滲透層析儀 37
4-1.3 元素分析儀、感應耦合電漿質譜分析儀 40
4-2 熱穩定性分析 41
4-3 電化學穩定度 42
4-4 離子傳導度 43
4-5 鋰離子遷移數 45
4-6 電解液吸收度 47
4-7 半電池測試 49
4-7.1 循環伏安法 49
4-7.2 充放電曲線比較 51
4-7.3 循環壽命比較 55
4-8 充放電前後電池結構檢測 56
第五章 總結 57
第六章 參考文獻 59
第七章 附錄 63
參考文獻 References
1. Goodenough, J. B.; Park, K. S.; The Li-Ion rechargeable battery: A Perspective. Journal of the American Chemical Society. 2013, 135 (4), 1167-1176.
2. Rohan, R.; Sun, Y.; Cai, W.; Pareek, K.; Zhang, Y.; Xu, G.; Cheng, H., Functionalized polystyrene based single ion conducting gel polymer electrolyte for lithium batteries. Solid State Ionics. 2015, 268, Part B, 294-299.
3. Li, Y.; Ravdelb, B.; Luchta, B.L., Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 2010, 13(8), A95.
4. Cheng, H.; Zhu, C.; Lu, M.; Yang, Y., Spectroscopic and electrochemical characterization of the passive layer formed on lithium in gel polymer electrolytes containing propylene carbonate. Journal of Power Sources. 2007, 173 (1), 531-537.
5. Armand, M.; Tarascon, J.M., Building better batteries. Nature. 2008, 451 (7179), 652-657.
6. Molenda, J.; Molenda, M., Composite cathode material for Li-ion batteries based on LiFePO4 system. InTech: Rijeka. 2011, p Ch. 0.
7. Whittingham, M.S., Lithium batteries and cathode materials. Chemical Reviews. 2004, 104 (10), 4271-4302.
8. Wu, Y.S.; Wu, C.L.; Chang, Y.M., Development and improvement of the lithium ion battery negative material surface modification. Journal of China Institute of Technology. 2004, 31 (12), 247-262.
9. Aravindan, V.; Gnanaraj, J.; Madhavi, S.; Liu, H.K., Lithium-ion conducting electrolyte salts for lithium batteries. Chemistry – A European Journal. 2011, 17 (51), 14326-14346.
10. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews. 2004, 104 (10), 4303-4418.
11. Schalkwijk, W.; Scrosati, B., Advances in lithium- ion batteries. Kluwer Academic Publishers. 2002.
12. Hayashi, K.; Nemoto, Y.; Tobishima, S.; Yamaki, J., Mixed solvent electrolyte for high voltage lithium metal secondary cells. Electrochimica Acta. 1999, 44 (14), 2337-2344.
13. 吳宇平, 戴曉兵, 馬軍旗, 程預江, 鋰離子電池-應用與實踐. 北京 化學工業出版社, 2004.
14. http://www.electronicdesign.com/energy/solid-polymer-electrolyte-makes-lithium-ion-safe.
15. 何玉梅, 呂良賜, 鋰電池含氟素電解質聚合物之製備與研究. 國立臺北科技大學, 2006.
16. Li, G.; Li, Z.; Zhang, P., Zhang, H., Wu, Y., Research on a gel polymer electrolyte for Li-ion batteries. In Pure and Applied Chemistry. 2008, 80, 2553.
17. Song, J.Y.; Wang, Y.Y.; Wan,C.C., Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources. 1999, 77 (2), 183-197.
18. Goodenough, J.B.; Kim, Y., Challenges for rechargeable Li batteries. Chemistry of Materials. 2010, 22 (3), 587-603.
19. Sun, X.G.; Reeder, C.L.; Kerr, J.B., Synthesis and characterization of network type single ion conductors. Macromolecules. 2004, 37 (6), 2219-2227.
20. Dou, S.; Zhang, S.; Klein, R.J.; Runt, J.; Colby, R.H., Synthesis and characterization of poly(ethylene glycol)-based single-ion conductors. Chemistry of Materials. 2006, 18 (18), 4288-4295.
21. Liu, G.; Reinhout, M.; Mainguy, B.; Baker, G.L., Synthesis, structure, and ionic conductivity of self-assembled amphiphilic poly(methacrylate) comb polymers. Macromolecules. 2006, 39 (14), 4726-4734.
22. Sun, X.G.; Kerr, J.B., Synthesis and characterization of network single ion conductors based on comb-branched polyepoxide ethers and lithium bis(allylmalonato)borate. Macromolecules. 2006, 39 (1), 362-372.
23. Herath, M.B.; Creager, S.E.; Rajagopal, R.V.; Geiculescu, O.E.; DesMarteau, D.D., Ionic conduction in polyether-based lithium arylfluorosulfonimide ionic melt electrolytes. Electrochimica Acta. 2009, 54 (24), 5877-5883.
24. Matsumoto, K.; Endo, T., Synthesis of networked polymers by copolymerization of monoepoxy-substituted lithium sulfonylimide and diepoxy-substituted poly(ethylene glycol), and their properties. Journal of Polymer Science Part A: Polymer Chemistry. 2011, 49 (8), 1874-1880.
25. Dominey, L.A.; Koch, V.R.; Blakley, T.J., Thermally stable lithium salts for polymer electrolytes. Electrochimica Acta. 1992, 37 (9), 1551-1554.
26. Tominaga, Y.; Ohno, H., Improved ionic conductivity of PEO/sulfonamide lithium aalt hybrid by the addition of LiTFSI. Chemistry Letters. 1998, 27 (9), 955-956.
27. Allcock, H.R.; Prange, R.; Hartle, T.J., Poly(phosphazene−ethylene oxide) di- and triblock copolymers as solid polymer electrolytes. Macromolecules. 2001, 34 (16), 5463-5470.
28. Narang, S.C.; Ventura, S.C., Single-ion conducting solid polymer electrolytes. Google Patents. 1999, EP-0796511 B1.
29. Mandal, B.K.; Walsh, C.J.; Sooksimuang, T.; Behroozi, S.J.; Kim, S.; Kim, Y.T.; Smotkin, E.S.; Filler, R.; Castro, C., New class of single-ion-conducting solid polymer electrolytes derived from polyphenols. Chemistry of Materials. 2000, 12 (1), 6-8.
30. Kurian, M.; Galvin, M.E.; Trapa, P.E.; Sadoway, D.R.; Mayes, A.M., Single-ion conducting polymer–silicate nanocomposite electrolytes for lithium battery applications. Electrochimica Acta. 2005, 50 (10), 2125-2134.
31. Krause, L.J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of Power Sources. 1997, 68 (2), 320-325.
32. GaRayleigh, L., On the equilibrium of liquid conducting masses charged with electricity. Philosophical Magazine Series 5. 2009, 14, 184-186.
33. Cooley, J.F., Apparatus for electrically dispersing fluids. Google Patents, 1902, US-692631 A.
34. Morton, W.J., Method of dispersing fluids. Google Patents. 1902, US-705691 A.
35. Vonnegut, B.; Neubauer, R.L., Production of monodisperse liquid particles by electrical atomization. Journal of Colloid Science. 1952, 7 (6), 616-622.
36. Taylor, G., Disintegration of water drops in an electric Field. Mathematical and Physical Sciences. 1964, 280 (1382), 383.
37. Reneker, D.H.; Chun, I., Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996, 7 (3), 216.
38. Yang, C.; Chen, S.; Wang, J.; Zhu, T.; Xu, G.; Chen, Z.; Ma, X.; Li, W., A facile electrospinning method to fabricate polylactide/graphene/MWCNTs nanofiber membrane for tissues scaffold. Applied Surface Science. 2016, 362, 163-168.
39. Rohan, R.; Sun, Y.; Cai, W.; Pareek, K.; Zhang, Y.; Xu, G.; Cheng, H., Functionalized meso/macro-porous single ion polymeric electrolyte for applications in lithium ion batteries. Journal of Materials Chemistry A. 2014, 2 (9), 2960-2967.
40. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer, 1987, 28 (13), 2324-2328.
41. Oh, H.; Xu, K.; Yoo, H.D.; Kim, D.S.; Chanthad, C.; Yang, G.; Jin, J.; Ayhan, I.A.; Oh, S.M.; Wang, Q., Poly(arylene ether)-based single-ion conductors for lithium-ion batteries. Chemistry of Materials. 2016, 28 (1), 188-196.
42. Porcarelli, L.; Shaplov, A.S.; Bella, F.; Nair, J.R.,; Mecerreyes, D.; Gerbaldi, C., Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Letters. 2016, 1 (4), 678-682.
43. Pan, Q.; Chen, Y.; Zhang, Yu.; Zeng, D.; Sun, Y.; Cheng, H., A dense transparent polymeric single ion conductor for lithium ion batteries with remarkable long-term stability. Journal of Power Sources. 2016, 336, 75-82.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code