Responsive image
博碩士論文 etd-0625117-133640 詳細資訊
Title page for etd-0625117-133640
論文名稱
Title
基於顯色與螢光淬滅系統所構成之適體光學生物晶片於高度專一性多巴胺檢測
An Aptasensor for Highly Selective Dopamine Detection Based on Colorimetry and Fluorescence Quenching System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-17
繳交日期
Date of Submission
2017-08-02
關鍵字
Keywords
適體生物晶片、多巴胺、金奈米團簇、螢光淬滅偵測、顯色偵測
Au nanoclusters, Aptasensor, Colorimetry System, Fluorescence Quenching System, Dopamine
統計
Statistics
本論文已被瀏覽 5746 次,被下載 11
The thesis/dissertation has been browsed 5746 times, has been downloaded 11 times.
中文摘要
審定書 i
ACKNOWLEDGEMENTS ii
中文摘要 iii
ABSTRACTS v
TABLE OF CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xvii
Chapter 1 Introduction and Literature Review 1
1.1 General Background Information 1
1.1.1 Dopamine associated with psychiatric and neurological disorders 1
1.1.2 Detection of DA in clinical diagnosis of Parkinson’s disease 2
1.2 Introduction of Biosensor 5
1.2.1 The specific interaction of bioreceptor 7
1.2.2 Aptamers SELEX 8
1.3 Biosensor System Based on Different Transducer 11
1.3.1 Electrochemical biosensors 11
1.3.2 Optical biosensors 13
1.3.3 Fluorescent biosensors 14
1.4 Biosensors for the Detection of Small Molecule 17
1.5 Research Purpose 24
Chapter 2 Experimental Section 26
2.1 Materials and Chemicals 26
2.2 Apparatus 29
2.3 Mechanism in This Project 31
2.4 Fabrication of Biosensor 32
2.4.1 Surface cleaning 32
2.4.2 Surface modification 33
2.4.3 Surface modification analysis 35
2.4.4 Quantitative analysis of amine groups on modified chips 36
2.4.5 Fabrication of DBA functional-biosensor 36
2.4.6 Agarose gel electrophoresis analysis 38
2.5 Synthesis of Red Fluorescent BSA-Au NCs 38
2.6 Detection of DA by DBA-modified Chip bPEI 39
2.7 Specificity and Selectivity Experiments 41
2.7.1 Interference substances 41
2.7.2 Non-specific aptamer for DA 41
2.8 Stability and recovery experiments 42
2.8.1 Stability tests 42
2.8.2 Detection of DA in CSF and FBS for recovery experiments 43
Chapter 3 Discussion and Results 44
3.1 Preparation of Functionalized Biochips 44
3.1.1 Molecular Dynamics simulation 46
3.1.2 TNBS assay 49
3.1.3 Quantitative analysis of -NH2 on Chip bPEI and Chip APTES 52
3.2 Immobilization of DBA on Biochip 54
3.2.1 Agarose gel electrophoresis 55
3.2.2 Conjugation rate of DBA on amine-modified chips 58
3.3 Investigation of DBA-Functionalized chip 60
3.3.1 AFM analysis for Chips 60
3.3.2 XPS analysis for surface characterization of biochips 62
3.4 DA Detecting Based on Colorimetric System 64
3.4.1 Oxidation of DA standard solution induced by aqueous NaOH 64
3.4.2 Linear regression based on colorimetric system 65
3.4.3 Selectivity studies (colorimetric system) 66
3.5 DA Detecting Based on Fluorescence Quenching System 68
3.5.1 Preparation of BSA-Au NCs 69
3.5.2 Quenching by DA solution and mechanism 71
3.5.3 The quenching time of BSA-Au NCs 74
3.5.4 Control experiments 75
3.5.5 Aqueous NaOH influences 76
3.5.6 Linear regression based on quenching system 78
3.5.7 Selectivity studies (fluorescence quenching system) 80
3.5.8 Biosensor stability 82
3.6 Recovery Experiment 83
Chapter 4 Conclusion 84
References 85
Abstract
Motivation: 
Dopamine (DA), one of the most prominent catecholamine neurotransmitter existing human’s circulation system and cerebrospinal fluid, plays a crucial role in several neurological disorders. According to research, the normal content of DA in healthy people was in the range of 1.3 - 2.6 μM (i.e. 0.26 μg/mL - 0.54 μg/mL), which indicated that when the DA concentration was abnormal in human plasma, it could lead to certain neurological disease such as schizophrenia, or Parkinson’s disease (PD).
Purpose:
In clinical diagnosis, positron emission tomography (PET) or single-photon emission computed tomography (SPECT) are harnessed to detect changes in striatal DA level. On the other hand, ELISA Kit and electrochemical detection (ECD) for HPLC are extremely selective and sensitive detection techniques, however, they are actually time-consuming, costly and complicated in clinical detection. Thus, we aimed to design a fabrication for a biochip detecting for DA would be so facile and cheap that have an inclination to be employed for the clinical detection in the near future.
Methods:
We immobilized the DBA onto amine groups-modified chips by covalent binding with GA linker. The amine groups modified chips were fabricated with branched polyethylenimine (bPEI). After that, we employed two sensing system for detection as soon as DA was captured by DBA. In the first system, was adopted based on the oxidation reaction of DA induced by sodium hydroxide (NaOH), causing the color of supernatant altering from transparent to brownish accompanied by a specific absorbance spectrum.
The second system the BSA-Au nanoclusters (BSA-Au NCs) can be quenched with the increasing concentration of DA based on PET mechanism.
Results:
In this study, the biochip prepared was able to detect DA with linear range from 1 ng/mL, to 10 mg/mL and a limit of detection (LOD) as low as 0.1 ng/mL based on fluorescence quenching system, which was in the detecting range of DA in human serum concentration. Also the results of interference test (e.g. ascorbic acid, glucose, alanine, uric acid, etc.) showed that our designed system was selective and specific. With those advantages, the biochip for DA detection certainly has potentiality to be applied in the clinical detection in the near future.
目次 Table of Contents
審定書 i
授權書 ii
ACKNOWLEDGEMENTS iii
中文摘要 iv
ABSTRACTS vi
TABLE OF CONTENTS viii
LIST OF FIGURES xii
LIST OF TABLES xviii
Chapter 1 Introduction and Literature Review 1
1.1 General Background Information 1
1.1.1 Dopamine associated with psychiatric and neurological disorders 1
1.1.2 Detection of DA in clinical diagnosis of Parkinson’s disease 2
1.2 Introduction of Biosensor 5
1.2.1 The specific interaction of bioreceptor 7
1.2.2 Aptamers SELEX 8
1.3 Biosensor System Based on Different Transducer 11
1.3.1 Electrochemical biosensors 11
1.3.2 Optical biosensors 13
1.3.3 Fluorescent biosensors 14
1.4 Biosensors for the Detection of Small Molecule 17
1.5 Research Purpose 24
Chapter 2 Experimental Section 26
2.1 Materials and Chemicals 26
2.2 Apparatus 29
2.3 Mechanism in This Project 31
2.4 Fabrication of Biosensor 32
2.4.1 Surface cleaning 32
2.4.2 Surface modification 33
2.4.3 Surface modification analysis 35
2.4.4 Quantitative analysis of amine groups on modified chips 36
2.4.5 Fabrication of DBA functional-biosensor 36
2.4.6 Agarose gel electrophoresis analysis 38
2.5 Synthesis of Red Fluorescent BSA-Au NCs 38
2.6 Detection of DA by DBA-modified Chip bPEI 39
2.7 Specificity and Selectivity Experiments 41
2.7.1 Interference substances 41
2.7.2 Non-specific aptamer for DA 41
2.8 Stability and recovery experiments 42
2.8.1 Stability tests 42
2.8.2 Detection of DA in CSF and FBS for recovery experiments 43
Chapter 3 Discussion and Results 44
3.1 Preparation of Functionalized Biochips 44
3.1.1 Molecular Dynamics simulation 46
3.1.2 TNBS assay 49
3.1.3 Quantitative analysis of -NH2 on Chip bPEI and Chip APTES 52
3.2 Immobilization of DBA on Biochip 54
3.2.1 Agarose gel electrophoresis 55
3.2.2 Conjugation rate of DBA on amine-modified chips 58
3.3 Investigation of DBA-Functionalized chip 60
3.3.1 AFM analysis for Chips 60
3.3.2 XPS analysis for surface characterization of biochips 62
3.4 DA Detecting Based on Colorimetric System 64
3.4.1 Oxidation of DA standard solution induced by aqueous NaOH 64
3.4.2 Linear regression based on colorimetric system 65
3.4.3 Selectivity studies (colorimetric system) 66
3.5 DA Detecting Based on Fluorescence Quenching System 68
3.5.1 Preparation of BSA-Au NCs 69
3.5.2 Quenching by DA solution and mechanism 71
3.5.3 The quenching time of BSA-Au NCs 74
3.5.4 Control experiments 75
3.5.5 Aqueous NaOH influences 76
3.5.6 Linear regression based on quenching system 78
3.5.7 Selectivity studies (fluorescence quenching system) 80
3.5.8 Biosensor stability 82
3.6 Recovery Experiment 83
Chapter 4 Conclusion 84
References 85
參考文獻 References
1. Diehl, D. J.; Gershon, S., The role of dopamine in mood disorders. Comprehensive Psychiatry 1992, 33 (2), 115-120.
2. Willner, P., Dopamine and depression: A review of recent evidence. I. Empirical studies. Brain Research Reviews 1983, 6 (3), 211-224.
3. Howes, O. D.; Kapur, S., The Dopamine Hypothesis of Schizophrenia: Version III—The Final Common Pathway. Schizophrenia Bull 2009, 35 (3), 549-562.
4. Kish, S. J.; Shannak, K.; Hornykiewicz, O., Uneven Pattern of Dopamine Loss in the Striatum of Patients with Idiopathic Parkinson's Disease. New England Journal of Medicine 1988, 318 (14), 876-880.
5. Liu, J.-M.; Wang, X.-X.; Cui, M.-L.; Lin, L.-P.; Jiang, S.-L.; Jiao, L.; Zhang, L.-H., A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine. Sensors and Actuators B: Chemical 2013, 176, 97-102.
6. Dauer, W.; Przedborski, S., Parkinson's Disease: Mechanisms and Models. Neuron 2003, 39 (6), 889-909.
7. Weiss, J. M.; Goodman, P. A.; Losito, B. G.; Corrigan, S.; Charry, J. M.; Bailey, W. H., Behavioral depression produced by an uncontrollable stressor: Relationship to norepinephrine, dopamine, and serotonin levels in various regions of rat brain. Brain Research Reviews 1981, 3 (2), 167-205.
8. Volavka, J.; Davis, L. G.; Ehrlich, Y. H., Endorphins, Dopamine, and Schizophrenia*. Schizophrenia Bull 1979, 5 (2), 227-239.
9. Kish, S. J.; Rajput, A.; Gilbert, J.; Rozdilsky, B.; Chang, L.-J.; Shannak, K.; Hornykiewicz, O., Elevated γ-aminobutyric acid level in striatal but not extrastriatal brain regions in Parkinson's disease: Correlation with striatal dopamine loss. Annals of Neurology 1986, 20 (1), 26-31.
10. Aosaki, T.; Miura, M.; Suzuki, T.; Nishimura, K.; Masuda, M., Acetylcholine–dopamine balance hypothesis in the striatum: An update. Geriatrics & Gerontology International 2010, 10, S148-S157.
11. Brooks, D. J., Imaging Approaches to Parkinson Disease. J Nucl Med 2010, 51 (4), 596-609.
12. Jankovic, J., Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry 2008, 79 (4), 368.
13. Valkenburg, C.; Tjaden, U.; Krogt, J.; Leden, B., Determination of dopamine and its acidic metabolites in brain tissue by HPLC with electrochemical detection in a single run after minimal sample pretreatment. J Neurochem 1982, 39 (4), 990-997.
14. Yang, L.; Beal, M. F., Determination of neurotransmitter levels in models of Parkinson’s disease by HPLC-ECD. Neurodegeneration: Methods and Protocols 2011, 401-415.
15. Vuorensola, K.; Siren, H.; Karjalainen, U., Determination of dopamine and methoxycatecholamines in patient urine by liquid chromatography with electrochemical detection and by capillary electrophoresis coupled with spectrophotometry and mass spectrometry. J Chromatogr B 2003, 788 (2), 277-289.
16. Kilts, C. D.; Anderson, C. M., The simultaneous quantification of dopamine, norepinephrine and epinephrine in micropunched rat brain nuclei by on-line trace enrichment HPLC with electrochemical detection: Distribution of catecholamines in the limbic system. Neurochem Int 1986, 9 (3), 437-445.
17. Alburges, M. E.; Narang, N.; Wamsley, J. K., A sensitive and rapid HPLC‐ECD method for the simultaneous analysis of norepinephrine, dopamine, serotonin and their primary metabolites in brain tissue. Biomed Chromatogr 1993, 7 (6), 306-310.
18. Gil-Loyzaga, P.; Parés-Herbute, N., HPLC detection of dopamine and noradrenaline in the cochlea of adult and developing rats. Dev Brain Res 1989, 48 (1), 157-160.
19. Nichkova, M.; Wynveen, P. M.; Marc, D. T.; Huisman, H.; Kellermann, G. H., Validation of an ELISA for urinary dopamine: applications in monitoring treatment of dopamine‐related disorders. J Neurochem 2013, 125 (5), 724-735.
20. Ziegler, C.; Göpel, W., Biosensor development. Current Opinion in Chemical Biology 1998, 2 (5), 585-591.
21. Sethi, R. S., Transducer aspects of biosensors. Biosensors and Bioelectronics 1994, 9 (3), 243-264.
22. Turner, A. P. F., Biosensors: sense and sensibility. Chem Soc Rev 2013, 42 (8), 3184-3196.
23. Vo-Dinh, T.; Cullum, B. M.; Stokes, D. L., Nanosensors and biochips: frontiers in biomolecular diagnostics. Sensors and Actuators B: Chemical 2001, 74 (1–3), 2-11.
24. Ferri, S.; Kojima, K.; Sode, K., Review of glucose oxidases and glucose dehydrogenases: a bird's eye view of glucose sensing enzymes. SAGE Publications: 2011.
25. Yoo, E.-H.; Lee, S.-Y., Glucose biosensors: an overview of use in clinical practice. Sensors-Basel 2010, 10 (5), 4558-4576.
26. Sun, Y.; He, K.; Zhang, Z.; Zhou, A.; Duan, H., Real-time electrochemical detection of hydrogen peroxide secretion in live cells by Pt nanoparticles decorated graphene–carbon nanotube hybrid paper electrode. Biosensors and Bioelectronics 2015, 68, 358-364.
27. Wang, P.; Yang, Y.; Hong, H.; Zhang, Y.; Cai, W.; Fang, D., Aptamers as Therapeutics in Cardiovascular Diseases. Current medicinal chemistry 2011, 18 (27), 4169-4174.
28. Liss, M.; Petersen, B.; Wolf, H.; Prohaska, E., An Aptamer-Based Quartz Crystal Protein Biosensor. Anal Chem 2002, 74 (17), 4488-4495.
29. Keefe, A. D.; Pai, S.; Ellington, A., Aptamers as therapeutics. Nat Rev Drug Discov 2010, 9 (7), 537-550.
30. Kong, H. Y.; Byun, J., Nucleic Acid Aptamers: New Methods for Selection, Stabilization, and Application in Biomedical Science. Biomolecules & Therapeutics 2013, 21 (6), 423-434.
31. Wang, R. E.; Zhang, Y.; Cai, J.; Cai, W.; Gao, T., Aptamer-Based Fluorescent Biosensors. Current medicinal chemistry 2011, 18 (27), 4175-4184.
32. Chen, X.; Estévez, M. C.; Zhu, Z.; Huang, Y.-F.; Chen, Y.; Wang, L.; Tan, W., Using Aptamer-Conjugated Fluorescence Resonance Energy Transfer Nanoparticles for Multiplexed Cancer Cell Monitoring. Anal Chem 2009, 81 (16), 7009-7014.
33. Cerchia, L.; de Franciscis, V., Targeting cancer cells with nucleic acid aptamers. Trends in Biotechnology 2010, 28 (10), 517-525.
34. Hermann, T.; Patel, D. J., Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287 (5454), 820.
35. Mairal, T.; Özalp, V. C.; Sánchez, P. L.; Mir, M.; Katakis, I.; O’Sullivan, C. K., Aptamers: molecular tools for analytical applications. Analytical and bioanalytical chemistry 2008, 390 (4), 989-1007.
36. Zhou, W.; Huang, P.-J. J.; Ding, J.; Liu, J., Aptamer-based biosensors for biomedical diagnostics. Analyst 2014, 139 (11), 2627-2640.
37. Freier, S. M.; Altmann, K.-H., The ups and downs of nucleic acid duplex stability: structure-stability studies on chemically-modified DNA: RNA duplexes. Nucleic Acids Res 1997, 25 (22), 4429-4443.
38. Nutiu, R.; Li, Y., Structure-switching signaling aptamers. J Am Chem Soc 2003, 125 (16), 4771-4778.
39. Farokhzad, O. C.; Jon, S.; Khademhosseini, A.; Tran, T.-N. T.; LaVan, D. A.; Langer, R., Nanoparticle-aptamer bioconjugates. Cancer research 2004, 64 (21), 7668-7672.
40. Lee, J. H.; Yigit, M. V.; Mazumdar, D.; Lu, Y., Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Advanced Drug Delivery Reviews 2010, 62 (6), 592-605.
41. Sun, H.; Zhu, X.; Lu, P. Y.; Rosato, R. R.; Tan, W.; Zu, Y., Oligonucleotide Aptamers: New Tools for Targeted Cancer Therapy. Molecular Therapy - Nucleic Acids 2014, 3, e182.
42. Jiang, Y.; Fang, X.; Bai, C., Signaling aptamer/protein binding by a molecular light switch complex. Anal Chem 2004, 76 (17), 5230-5235.
43. Cerchia, L.; Giangrande, P. H.; McNamara, J. O.; de Franciscis, V., Cell-Specific Aptamers for Targeted Therapies. Methods in molecular biology (Clifton, N.J.) 2009, 535, 59-78.
44. Guo, K.-T.; Ziemer, G.; Paul, A.; Wendel, H. P., CELL-SELEX: Novel perspectives of aptamer-based therapeutics. Int J Mol Sci 2008, 9 (4), 668-678.
45. Huizenga, D. E.; Szostak, J. W., A DNA aptamer that binds adenosine and ATP. Biochemistry-Us 1995, 34 (2), 656-665.
46. Famulok, M., Molecular recognition of amino acids by RNA-aptamers: an L-citrulline binding RNA motif and its evolution into an L-arginine binder. J Am Chem Soc 1994, 116 (5), 1698-1706.
47. Freeman, R.; Liu, X.; Willner, I., Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer–substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 2011, 133 (30), 11597-11604.
48. McConnell, E. M.; Holahan, M. R.; DeRosa, M. C., Aptamers as promising molecular recognition elements for diagnostics and therapeutics in the central nervous system. Nucleic acid therapeutics 2014, 24 (6), 388-404.
49. Wang, J., Electrochemical detection for microscale analytical systems: a review. Talanta 2002, 56 (2), 223-231.
50. Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E., Electrochemical Biosensors - Sensor Principles and Architectures. Sensors (Basel, Switzerland) 2008, 8 (3), 1400-1458.
51. Grieshaber, D.; MacKenzie, R.; Voeroes, J.; Reimhult, E., Electrochemical biosensors-sensor principles and architectures. Sensors-Basel 2008, 8 (3), 1400-1458.
52. Long, F.; Zhu, A.; Shi, H., Recent advances in optical biosensors for environmental monitoring and early warning. Sensors-Basel 2013, 13 (10), 13928-13948.
53. Gupta, B. D.; Verma, R. K., Surface plasmon resonance-based fiber optic sensors: principle, probe designs, and some applications. Journal of sensors 2009, 2009.
54. Feng, L.; Musto, C. J.; Kemling, J. W.; Lim, S. H.; Zhong, W.; Suslick, K. S., Colorimetric sensor array for determination and identification of toxic industrial chemicals. Anal Chem 2010, 82 (22), 9433-9440.
55. Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S., In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology 2004, 22 (8), 969-976.
56. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T., Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angewandte Chemie International Edition 2008, 47 (44), 8438-8441.
57. Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K., Design of environment‐sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie 2003, 115 (38), 4788-4791.
58. Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W., Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388 (6645), 860-862.
59. Broussard, J. A.; Rappaz, B.; Webb, D. J.; Brown, C. M., Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat Protoc 2013, 8 (2), 265-281.
60. Fan, L.-J.; Jones, W. E., Studies of photoinduced electron transfer and energy migration in a conjugated polymer system for fluorescence “turn-on” chemosensor applications. The Journal of Physical Chemistry B 2006, 110 (15), 7777-7782.
61. Zhang, W.; Ma, Z.; Du, L.; Li, M., Design strategy for photoinduced electron transfer-based small-molecule fluorescent probes of biomacromolecules. Analyst 2014, 139 (11), 2641-2649.
62. Wang, X.-H.; Wang, S., Sensors and biosensors for the determination of small molecule biological toxins. Sensors-Basel 2008, 8 (9), 6045-6054.
63. Mitchell, K. M., Acetylcholine and Choline Amperometric Enzyme Sensors Characterized in Vitro and in Vivo. Anal Chem 2004, 76 (4), 1098-1106.
64. Li, J.; Lin, X., Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sensors and Actuators B: Chemical 2007, 124 (2), 486-493.
65. Cui, F.; Zhang, X., Electrochemical sensor for epinephrine based on a glassy carbon electrode modified with graphene/gold nanocomposites. J Electroanal Chem 2012, 669, 35-41.
66. Deng, Y.; Wang, W.; Ma, C.; Li, Z., Fabrication of an electrochemical biosensor array for simultaneous detection of L-glutamate and acetylcholine. Journal of biomedical nanotechnology 2013, 9 (8), 1378-1382.
67. Zhang, S.; Xia, J.; Li, X., Electrochemical Biosensor for Detection of Adenosine Based on Structure-Switching Aptamer and Amplification with Reporter Probe DNA Modified Au Nanoparticles. Anal Chem 2008, 80 (22), 8382-8388.
68. Baron, R.; Zayats, M.; Willner, I., Dopamine-, l-DOPA-, Adrenaline-, and Noradrenaline-Induced Growth of Au Nanoparticles:  Assays for the Detection of Neurotransmitters and of Tyrosinase Activity. Anal Chem 2005, 77 (6), 1566-1571.
69. Lutolf, M. P.; Hubbell, J. A., Synthesis and physicochemical characterization of end-linked poly (ethylene glycol)-co-peptide hydrogels formed by Michael-type addition. Biomacromolecules 2003, 4 (3), 713-722.
70. Peng, J. J.; Guo, H.; Li, Y. F.; Wang, Y. H.; Chen, W. Y.; Wang, A. J., Single Molecular Functionalized Gold Nanoparticles for Hydrogen-Bonding Recognition and Colorimetric Detection of Dopamine with High Sensitivity and Selectivity. Acs Appl Mater Inter 2013, 5 (4), 1226-1231.
71. Zheng, Y.; Wang, Y.; Yang, X., Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensors and Actuators B: Chemical 2011, 156 (1), 95-99.
72. Xie, J. P.; Zheng, Y. G.; Ying, J. Y., Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters. J Am Chem Soc 2009, 131 (3), 888-+.
73. Wang, Y.; Tang, L., Chemisorption assembly of Au nanorods on mercaptosilanized glass substrate for label-free nanoplasmon biochip. Anal Chim Acta 2013, 796, 122-129.
74. Nusz, G. J.; Marinakos, S. M.; Curry, A. C.; Dahlin, A.; Höök, F.; Wax, A.; Chilkoti, A., Label-Free Plasmonic Detection of Biomolecular Binding by a Single Gold Nanorod. Anal Chem 2008, 80 (4), 984-989.
75. Cras, J. J.; Rowe-Taitt, C. A.; Nivens, D. A.; Ligler, F. S., Comparison of chemical cleaning methods of glass in preparation for silanization. Biosensors and Bioelectronics 1999, 14 (8–9), 683-688.
76. Cheng, W.; He, L.; Fan, X.; Ou, Q.; Liang, R., Surface modification of indium tin oxide by oxygen plasma immersion ion implantation. Science China Technological Sciences 2013, 56 (4), 925-929.
77. Bhattacharya, S.; Datta, A.; Berg, J. M.; Gangopadhyay, S., Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. Journal of Microelectromechanical Systems 2005, 14 (3), 590-597.
78. Palimi, M. J.; Rostami, M.; Mahdavian, M.; Ramezanzadeh, B., Surface modification of Fe2O3 nanoparticles with 3-aminopropyltrimethoxysilane (APTMS): An attempt to investigate surface treatment on surface chemistry and mechanical properties of polyurethane/Fe2O3 nanocomposites. Appl Surf Sci 2014, 320, 60-72.
79. Qin, M.; Hou, S.; Wang, L.; Feng, X.; Wang, R.; Yang, Y.; Wang, C.; Yu, L.; Shao, B.; Qiao, M., Two methods for glass surface modification and their application in protein immobilization. Colloids and Surfaces B: Biointerfaces 2007, 60 (2), 243-249.
80. Hughes, S.; Dasary, S. S. R.; Begum, S.; Williams, N.; Yu, H., MEISENHEIMER COMPLEX BETWEEN 2,4,6-TRINITROTOLUENE AND 3-AMINOPROPYLTRIETHOXYSILANE AND ITS USE FOR A PAPER-BASED SENSOR. Sensing and Bio-Sensing Research 2015, 5, 37-41.
81. Guo, N.; Chen, Y.; Rao, Q.; Yin, Y.; Wang, C., Fabrication of durable hydrophobic cellulose surface from silane-functionalized silica hydrosol via electrochemically assisted deposition. J Appl Polym Sci 2015, 132 (44), n/a-n/a.
82. Marinakos, S. M.; Chen, S.; Chilkoti, A., Plasmonic Detection of a Model Analyte in Serum by a Gold Nanorod Sensor. Anal Chem 2007, 79 (14), 5278-5283.
83. Vinoba, M.; Lim, K. S.; Lee, S. H.; Jeong, S. K.; Alagar, M., Immobilization of Human Carbonic Anhydrase on Gold Nanoparticles Assembled onto Amine/Thiol-Functionalized Mesoporous SBA-15 for Biomimetic Sequestration of CO2. Langmuir 2011, 27 (10), 6227-6234.
84. Jeon, J.; Panchagnula, V.; Pan, J.; Dobrynin, A. V., Molecular Dynamics Simulations of Mutilayer Films of Polyelectrolytes and Nanoparticles. Langmuir 2006, 22 (10), 4629-4637.
85. Walsh, M. K.; Wang, X. W.; Weimer, B. C., Optimizing the immobilization of single-stranded DNA onto glass beads. J Biochem Bioph Meth 2001, 47 (3), 221-231.
86. Yewle, J. N.; Wei, Y.; Puleo, D. A.; Daunert, S.; Bachas, L. G., Oriented Immobilization of Proteins on Hydroxyapatite Surface Using Bifunctional Bisphosphonates as Linkers. Biomacromolecules 2012, 13 (6), 1742-1749.
87. Grotzky, A.; Manaka, Y.; Fornera, S.; Willeke, M.; Walde, P., Quantification of α-polylysine: a comparison of four UV/Vis spectrophotometric methods. Anal Methods-Uk 2010, 2 (10), 1448-1455.
88. Muanpho, K.; Praserthdam, P.; Pavarajarn, V. In Surface modification for fabrication of gold nanoparticles thin film on glass substrate, 2006.
89. Gao, A.; Yang, X.; Zhang, C.; Long, G.; Pu, J.; Yuan, Y.; Liu, H.; Li, Y.; Liao, F., Facile spectrophotometric assay of molar equivalents of N-hydroxysuccinimide esters of monomethoxyl poly-(ethylene glycol) derivatives. Chemistry Central Journal 2012, 6, 142-142.
90. Balamurugan, S.; Obubuafo, A.; Soper, S. A.; Spivak, D. A., Surface immobilization methods for aptamer diagnostic applications. Anal Bioanal Chem 2008, 390 (4), 1009-21.
91. Potyrailo, R. A.; Conrad, R. C.; Ellington, A. D.; Hieftje, G. M., Adapting Selected Nucleic Acid Ligands (Aptamers) to Biosensors. Anal Chem 1998, 70 (16), 3419-3425.
92. Medley, C. D.; Bamrungsap, S.; Tan, W.; Smith, J. E., Aptamer-Conjugated Nanoparticles for Cancer Cell Detection. Anal Chem 2011, 83 (3), 727-734.
93. Gulbakan, B.; Yasun, E.; Shukoor, M. I.; Zhu, Z.; You, M.; Tan, X.; Sanchez, H.; Powell, D. H.; Dai, H.; Tan, W., A DUAL PLATFORM FOR SELECTIVE ANALYTE ENRICHMENT AND IONIZATION IN MASS SPECTROMETRY USING APTAMER-CONJUGATED GRAPHENE OXIDE. J Am Chem Soc 2010, 132 (49), 17408-17410.
94. López-Gallego, F.; Betancor, L.; Mateo, C.; Hidalgo, A.; Alonso-Morales, N.; Dellamora-Ortiz, G.; Guisán, J. M.; Fernández-Lafuente, R., Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology 2005, 119 (1), 70-75.
95. Kowal, R.; Parsons, R. G., Stabilization of proteins immobilized on Sepharose from leakage by glutaraldehyde crosslinking. Anal Biochem 1980, 102 (1), 72-76.
96. Herr, J. K.; Smith, J. E.; Medley, C. D.; Shangguan, D.; Tan, W., Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem 2006, 78 (9), 2918-2924.
97. Stadtherr, K.; Wolf, H.; Lindner, P., An Aptamer-Based Protein Biochip. Anal Chem 2005, 77 (11), 3437-3443.
98. Mannironi, C.; Di Nardo, A.; Fruscoloni, P.; Tocchini-Valentini, G. P., In vitro selection of dopamine RNA ligands. Biochemistry-Us 1997, 36 (32), 9726-9734.
99. Reddy, N.; Tan, Y.; Li, Y.; Yang, Y., Effect of Glutaraldehyde Crosslinking Conditions on the Strength and Water Stability of Wheat Gluten Fibers. Macromolecular Materials and Engineering 2008, 293 (7), 614-620.
100. Johansson, B. G., Agarose gel electrophoresis. Scandinavian Journal of Clinical and Laboratory Investigation 1972, 29 (sup124), 7-19.
101. Ristova, M.; Ristov, M., XPS profile analysis on CdS thin film modified with Ag by an ion exchange. Appl Surf Sci 2001, 181 (1–2), 68-77.
102. Inoue, Y.; Fujimoto, H.; Ogino, T.; Iwata, H., Site-specific gene transfer with high efficiency onto a carbon nanotube-loaded electrode. Journal of the Royal Society Interface 2008, 5 (25), 909-918.
103. Wang, C.; Shen, J.; Xie, F.; Duan, B.; Xie, X., A versatile dopamine-induced intermediate layer for polyether imides (PEI) deposition on magnesium to render robust and high inhibition performance. Corrosion Science.
104. Martin, H. J.; Schulz, K. H.; Bumgardner, J. D.; Walters, K. B., XPS Study on the Use of 3-Aminopropyltriethoxysilane to Bond Chitosan to a Titanium Surface. Langmuir 2007, 23 (12), 6645-6651.
105. Zhang, Z.; Hu, R.; Liu, Z., Formation of a porphyrin monolayer film by axial ligation of protoporphyrin IX zinc to an amino-terminated silanized glass surface. Langmuir 2000, 16 (3), 1158-1162.
106. Raj, K.; Shanmugam, R.; Mahalakshmi, R.; Viswanathan, B., XPS and IR spectral studies on the structure of phosphate and sulphate modified titania–a combined DFT and experimental study. 2010.
107. Hume, S. M.; Fischer, W. K.; Perruchoud, R. C.; Metson, J. B.; Baker, R. T. K., Influence of petroleum coke sulphur content on the sodium sensitivity of carbon anodes. In Essential Readings in Light Metals, Springer: 2016; pp 123-129.
108. Precht, R.; Stolz, S.; Mankel, E.; Mayer, T.; Jaegermann, W.; Hausbrand, R., Investigation of sodium insertion into tetracyanoquinodimethane (TCNQ): results for a TCNQ thin film obtained by a surface science approach. Phys Chem Chem Phys 2016, 18 (4), 3056-3064.
109. Sulzer, D.; Zecca, L., Intraneuronal dopamine-quinone synthesis: a review. Neurotox Res 1999, 1 (3), 181-195.
110. Berman, S. B.; Hastings, T. G., Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria. J Neurochem 1999, 73 (3), 1127-1137.
111. Hastings, T. G., The role of dopamine oxidation in mitochondrial dysfunction: implications for Parkinson’s disease. J Bioenerg Biomembr 2009, 41 (6), 469-472.
112. Church, W. H.; Ward, V. L., Uric acid is reduced in the substantia nigra in Parkinson's disease: effect on dopamine oxidation. Brain Res Bull 1994, 33 (4), 419-425.
113. Bisaglia, M.; Mammi, S.; Bubacco, L., Kinetic and Structural Analysis of the Early Oxidation Products of Dopamine ANALYSIS OF THE INTERACTIONS WITH α-SYNUCLEIN. J Biol Chem 2007, 282 (21), 15597-15605.
114. Ito, S.; Wakamatsu, K., Chemical Degradation of Melanins: Application to Identification of Dopamine‐melanin. Pigm Cell Res 1998, 11 (2), 120-126.
115. Bernsmann, F.; Ponche, A.; Ringwald, C.; Hemmerlé, J.; Raya, J.; Bechinger, B.; Voegel, J.-C.; Schaaf, P.; Ball, V., Characterization of Dopamine−Melanin Growth on Silicon Oxide. The Journal of Physical Chemistry C 2009, 113 (19), 8234-8242.
116. Sheng, Y.; Bowser, M. T., Isolating single stranded DNA using a microfluidic dialysis device. Analyst 2014, 139 (1), 215-224.
117. Ju, K.-Y.; Lee, Y.; Lee, S.; Park, S. B.; Lee, J.-K., Bioinspired Polymerization of Dopamine to Generate Melanin-Like Nanoparticles Having an Excellent Free-Radical-Scavenging Property. Biomacromolecules 2011, 12 (3), 625-632.
118. Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W., Perspectives on poly (dopamine). Chemical Science 2013, 4 (10), 3796-3802.
119. Wei, Q.; Zhang, F.; Li, J.; Li, B.; Zhao, C., Oxidant-induced dopamine polymerization for multifunctional coatings. Polymer Chemistry 2010, 1 (9), 1430-1433.
120. Yildirim, A.; Bayindir, M., Turn-on fluorescent dopamine sensing based on in situ formation of visible light emitting polydopamine nanoparticles. Anal Chem 2014, 86 (11), 5508-12.
121. Dhalla, K. S.; Ganguly, P. K.; Rupp, H.; Beamish, R. E.; Dhalla, N. S., Measurement of adrenolutin as an oxidation product of catecholamines in plasma. Mol Cell Biochem 1989, 87 (1), 85-92.
122. El‐Rabbat, N. A.; Omar, N. M., Colorimetric determination of catecholamines by 2, 3, 5‐triphenyltetrazolium chloride. J Pharm Sci 1978, 67 (6), 779-781.
123. Liu, L.; Wakamatsu, K.; Ito, S.; Williamson, P. R., Catecholamine oxidative products, but not melanin, are produced by Cryptococcus neoformans during neuropathogenesis in mice. Infection and immunity 1999, 67 (1), 108-112.
124. Fernández, F.; Torres, M., Evaluation of Pluchea carolinensis extracts as antioxidants by the epinephrine oxidation method. Fitoterapia 2006, 77 (3), 221-226.
125. Gadkariem, E. A.; Ibrahim, K. E. E.; Kamil, N. A. A.; Haga, M. E. M.; El-Obeid, H. A., A new spectrophotometric method for the determination of methyldopa. Saudi Pharmaceutical Journal 2009, 17 (4), 289-293.
126. Ankireddy, S. R.; Kim, J., Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots. Int J Nanomed 2015, 10, 113-119.
127. Zhou, X.; Ma, P.; Wang, A.; Yu, C.; Qian, T.; Wu, S.; Shen, J., Dopamine fluorescent sensors based on polypyrrole/graphene quantum dots core/shell hybrids. Biosensors and Bioelectronics 2015, 64, 404-410.
128. Ebru Seçkin, Z.; Volkan, M., Flow injection fluorescence determination of dopamine using a photo induced electron transfer (PET) boronic acid derivative. Anal Chim Acta 2005, 547 (1), 104-108.
129. Anilkumar, P.; Wang, X.; Cao, L.; Sahu, S.; Liu, J.-H.; Wang, P.; Korch, K.; Tackett Ii, K. N.; Parenzan, A.; Sun, Y.-P., Toward quantitatively fluorescent carbon-based “quantum” dots. Nanoscale 2011, 3 (5), 2023-2027.
130. Khullar, P.; Singh, V.; Mahal, A.; Dave, P. N.; Thakur, S.; Kaur, G.; Singh, J.; Singh Kamboj, S.; Singh Bakshi, M., Bovine Serum Albumin Bioconjugated Gold Nanoparticles: Synthesis, Hemolysis, and Cytotoxicity toward Cancer Cell Lines. The Journal of Physical Chemistry C 2012, 116 (15), 8834-8843.
131. Wang, C.; Li, J.; Amatore, C.; Chen, Y.; Jiang, H.; Wang, X. M., Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angewandte Chemie International Edition 2011, 50 (49), 11644-11648.
132. Chen, T.; Xu, S.; Zhao, T.; Zhu, L.; Wei, D.; Li, Y.; Zhang, H.; Zhao, C., Gold nanocluster-conjugated amphiphilic block copolymer for tumor-targeted drug delivery. Acs Appl Mater Inter 2012, 4 (11), 5766-5774.
133. Wang, X.; Wu, P.; Hou, X.; Lv, Y., An ascorbic acid sensor based on protein-modified Au nanoclusters. Analyst 2013, 138 (1), 229-233.
134. Aswathy, B.; Sony, G., Cu 2+ modulated BSA–Au nanoclusters: A versatile fluorescence turn-on sensor for dopamine. Microchem J 2014, 116, 151-156.
135. Tao, Y.; Lin, Y.; Ren, J.; Qu, X., A dual fluorometric and colorimetric sensor for dopamine based on BSA-stabilized Aunanoclusters. Biosensors and Bioelectronics 2013, 42, 41-46.
136. Zhang, P.; Wang, Y.; Yin, Y., Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide. Sensors-Basel 2016, 16 (7), 1124.
137. Chen, L.-Y.; Wang, C.-W.; Yuan, Z.; Chang, H.-T., Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 2014, 87 (1), 216-229.
138. Li, H.; Guo, Y.; Xiao, L.; Chen, B., Selective and sensitive detection of acetylcholinesterase activity using denatured protein-protected gold nanoclusters as a label-free probe. Analyst 2014, 139 (1), 285-289.
139. Chevrier, D. M.; Chatt, A.; Zhang, P., Properties and applications of protein-stabilized fluorescent gold nanoclusters: short review. NANOP 2012, 6 (1), 064504-1-064504-16.
140. Govindaraju, S.; Ankireddy, S. R.; Viswanath, B.; Kim, J.; Yun, K., Fluorescent Gold Nanoclusters for Selective Detection of Dopamine in Cerebrospinal fluid. Sci Rep-Uk 2017, 7.
141. Teng, Y.; Jia, X. F.; Li, J.; Wang, E. K., Ratiometric Fluorescence Detection of Tyrosinase Activity and Dopamine Using Thiolate-Protected Gold Nanoclusters. Anal Chem 2015, 87 (9), 4897-4902.
142. Medintz, I. L.; Stewart, M. H.; Trammell, S. A.; Susumu, K.; Delehanty, J. B.; Mei, B. C.; Melinger, J. S.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi, H., Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat Mater 2010, 9 (8), 676-684.
143. Mu, Q.; Xu, H.; Li, Y.; Ma, S. J.; Zhong, X. H., Adenosine capped QDs based fluorescent sensor for detection of dopamine with high selectivity and sensitivity. Analyst 2014, 139 (1), 93-98.
144. Ji, X.; Palui, G.; Avellini, T.; Na, H. B.; Yi, C.; Knappenberger, K. L., Jr.; Mattoussi, H., On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine. J Am Chem Soc 2012, 134 (13), 6006-17.
145. Abbaspour, A.; Khajehzadeh, A.; Ghaffarinejad, A., A simple and cost-effective method, as an appropriate alternative for visible spectrophotometry: development of a dopamine biosensor. Analyst 2009, 134 (8), 1692-1698.
146. Xiang, L.; Lin, Y. Q.; Yu, P.; Su, L.; Mao, L. Q., Laccase-catalyzed oxidation and intramolecular cyclization of dopamine: A new method for selective determination of dopamine with laccase/carbon nanotube-based electrochemical biosensors. Electrochim Acta 2007, 52 (12), 4144-4152.
147. Shamsipur, M.; Shanehasz, M.; Khajeh, K.; Mollania, N.; Kazemi, S. H., A novel quantum dot–laccase hybrid nanobiosensor for low level determination of dopamine. Analyst 2012, 137 (23), 5553-5559.
148. Wang, H. Y.; Feng, X. G.; Zhang, M.; Zhao, H., Determination of dopamine in injections and urine by an enzyme-catalyzed fluorescence quenching method. Analytical Sciences 2007, 23 (11), 1297-1300.
149. Kimoto, M.; Yamashige, R.; Matsunaga, K.-i.; Yokoyama, S.; Hirao, I., Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nature biotechnology 2013, 31 (5), 453-457.
150. Wang, R.; Zhao, J.; Jiang, T.; Kwon, Y. M.; Lu, H.; Jiao, P.; Liao, M.; Li, Y., Selection and characterization of DNA aptamers for use in detection of avian influenza virus H5N1. Journal of virological methods 2013, 189 (2), 362-369.
151. Lu, J.; Yan, M.; Ge, L.; Ge, S.; Wang, S.; Yan, J.; Yu, J., Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosensors and Bioelectronics 2013, 47, 271-277.
152. Li, L.-D.; Chen, Z.-B.; Zhao, H.-T.; Guo, L.; Mu, X., An aptamer-based biosensor for the detection of lysozyme with gold nanoparticles amplification. Sensors and Actuators B: Chemical 2010, 149 (1), 110-115.
153. Hamidi-Asl, E.; Dardenne, F.; Blust, R.; De Wael, K., An improved electrochemical aptasensor for chloramphenicol detection based on aptamer incorporated gelatine. Sensors-Basel 2015, 15 (4), 7605-7618.
154. Kim, J. H.; Hwang, E. T.; Kang, K.-k.; Tatavarty, R.; Gu, M. B., Aptamers-on-nanofiber as a novel hybrid capturing moiety. J Mater Chem 2011, 21 (48), 19203-19206.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code