Responsive image
博碩士論文 etd-0625117-134910 詳細資訊
Title page for etd-0625117-134910
論文名稱
Title
四元Ge-Sn-Co-Sb熱電材料之相圖及鍺/錫摻雜之CoSb3方鈷礦結構合金熱電性質
Phase diagram of quaternary Ge-Sn-Co-Sb system and thermoelectric properties of (Ge,Sn) doped skutterudite CoSb3
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
174
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-06-28
繳交日期
Date of Submission
2017-08-11
關鍵字
Keywords
熱電材料、方鈷礦結構、CoSb3、液相線投影圖、熱電性質
Liquidus projection, Skutterudite, thermoelectric materials, CoSb3, Ge-Sn-Co-Sb, thermoelectric property
統計
Statistics
本論文已被瀏覽 5716 次,被下載 40
The thesis/dissertation has been browsed 5716 times, has been downloaded 40 times.
中文摘要
尋找無限的能源一直是人類的宿願之一,加上近年來環保意識高漲,許多學者無不投入開發高轉換效率能源材料。熱電材料擁有將熱能與電能互相轉換的優異能力,尤其以廢熱回收(waste heat recovery)蔚為大宗。而在中溫型熱電材料中,CoSb3方鈷礦結構熱電材料擁有極高的發展潛力,經由添加摻雜物改變晶體結構、電子能階與微結構可達到在400 oC ~600 oC之間優異的熱電性質。相圖為熱力學的結晶也是材料科學的基礎,透過相變化、微結構以及組成等種種因素對熱電性質進行進一步的探究,文獻上對於此類資訊描述較少,留下了很多探索方向。因鍺(Germanium)與錫(Tin)有著優異導電性,透過此兩元素的添加進行熱電性質的提升。本研究致力於建立Ge-Sn-Co-Sb四元相圖。本研究的工作包括:(1)以實驗建構Ge-Co-Sb三元液相線投影圖、(2)Sn-Co-Sb三元液相線投影圖,(3)選定化學計量比組成之CoSb3之二元合金,進行熱電性質量測及討論,(4)在CoSb3中摻雜Ge、Sn,並量測熱電性質及討論。由本研究結果可知,Ge-Sn-Co-Sb液相線投影圖由實驗分析,總共存在16個首要析出相區。在熱電性質中,多孔性材料CoSb3在544 K下量測到zT值為0.265,比起單晶CoSb3有著50倍的突破,而在Ge摻雜量為1 %的CoSb3在661 K下量測到0.278的值,最佳熱電優值的表現溫度往較高的溫度偏移,同溫下比起多孔性材料CoSb3有著接近123 %的提升。
Abstract
Thermoelectric materials and devices can generate electricity from thermal energy directly, and can be useful in waste heat recovery. The skutterudite CoSb3 has been a cost-effective alternative for the mid-temperature thermoelectric generator owing to its promising electrical transport properties. Herein, minor dopant of Ge or/and Sn is introduced into the CoSb3 for optimizing the thermal/electrical transport behaviors. Phase diagram of ternary Sn-Co-Sb and Ge-Co-Sb systems are crucial in illustrating the relationships between the phase stability, microstructures and thermal-to-electricity conversion, and have been determined by experiments. Herein the liquidus projections of ternary Ge-Co-Sb and Sn-Co-Sb system are constructed by collecting the information from various as-solidified Sn-Co-Sb and Ge-Co-Sb alloys. On the basis of as-determined phase diagram, selective ternary Ge-doped/Sn-doped CoSb3 alloys are synthesized and their thermoelectric properties are measured within 300 K-700 K. Among the Ge/Sn-doped CoSb3, the alloy with 1 at% Ge content reaches the highest peak value of zT~ 0.28 at 661 K, showing 123 % enhancement compared with that of undoped CoSb3.
目次 Table of Contents
摘要 ii
Abstract iii
一、前言 1
二、文獻回顧 8
2-1熱電元件 8
2-2 CoSb3熱電材料 10
2-3相圖 12
2-4 Co-Ge二元系統相圖 13
2-5 Co-Sb二元系統相圖 15
2-6 Ge-Sb二元系統相圖 17
2-7 Co-Sn二元系統相圖 18
2-8 Sn-Sb二元系統相圖 20
三、實驗方法 22
3-1 Ge-Sn-Co-Sb四元系統之液相線投影圖 22
3-1-1合金配置 22
3-1-2樣品處理與分析 23
3-2 四元Ge-Sn-Co-Sb系統之熱電性質 24
3-2-1 合金配置 24
3-2-2 熱電性質量測 26
四、結果與討論 28
4-1 四元Ge-Sn-Co-Sb系統液相線投影圖 28
4-2 Ge-Co-Sb系統液相線投影圖 30
4-2-1 Co首要析出相區 36
4-2-2 Co3Ge2Sb首要析出相區 38
4-2-3 CoSb首要析出相區 48
4-2-4 CoGe首要析出相區 50
4-2-5 CoGe2首要析出相區 55
4-2-6 CoSb2首要析出相區 64
4-2-7 Ge首要析出相區 70
4-2-8 CoSb3首要析出相區 77
4-2-9 Sb首要析出相區 84
4-2-10 三元Ge-Co-Sb系統液相線投影圖總結 86
4-3 Sn-Co-Sb三元系統液相線投影圖 87
4-3-1 CoSb首要析出相區 92
4-3-2Co3Sn2首要析出相區 103
4-3-3CoSn首要析出相區 105
4-3-4CoSbSn2首要析出相區 106
4-3-5 CoSb2首要析出相區 107
CoSn2首要析出相區 111
4-3-7 三元Sn-Co-Sb系統液相線投影圖總結 112
4-4四元Ge-Sn-Co-Sb系統之熱電性質 113
4-4-1 CoSb3合金製程比較 113
4-4-2 二元CoSb3合金熱電性質探討 118
4-4-3四元Ge-Sn-Co-Sb合金熱電性質探討 121
五、結論 152
七、參考文獻 155
參考文獻 References
[1]. N. Espinosa, M. Lazard, L. Aixala and H. Scherrer, "Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery", Journal of Electronic Materials, Vol. 39, pp. 1446-1455, (2010)
[2]. G. J. Synder and E. S. Toberer, "Complex thermoelectric materials", nature materials, Vol. 7, pp. 105-114, (2008)
[3]. X. Zhang and L.-D. Zhao, "Thermoelectric materials: Energy conversion between heat and electricity", Journal of Materiomics, Vol. 1, pp. 92-105, (2015)
[4]. G. S. Nolas, D. T. Morelli and T. M. Tritt, "SKUTTERUDITES: A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications", Annual Review of Materials Science, Vol. 29, pp. 89-116, (1999)
[5]. G. S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg and D. C. Johnson, "Thermoelectric properties of Sn-filled skutterudites", Applied Physics Letters, Vol. 77, pp. 52-54, (2000)
[6]. Y. Kawaharada, K. Kurosaki, M. Uno and S. Yamanaka, "Thermoelectric properties of CoSb3", Journal of Alloys and Compounds, Vol. 315, pp. 193–197, (2001)
[7]. S. Hui, M. D. Nielsen, M. R. Homer, D. L. Medlin, J. Tobola, J. R. Salvador, J. P. Heremans, K. P. Pipe and C. Uher, "Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites", Journal of Applied Physics, Vol. 115, pp. 103704, (2014)
[8]. X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang and L. Chen, "Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports", J Am Chem Soc, Vol. 133, pp. 7837-7846, (2011)
[9]. G. Rogl, A. Grytsiv, P. Rogl, N. Peranio, E. Bauer, M. Zehetbauer and O. Eibl, "n-Type skutterudites (R,Ba,Yb)yCo4Sb12 (R=Sr, La, Mm, DD, SrMm, SrDD) approaching ZT≈2.0", Acta Materialia, Vol. 63, pp. 30-43, (2014)
[10]. J. Dong, K. Yang, B. Xu, L. Zhang, Q. Zhang and Y. Tian, "Structure and thermoelectric properties of Se- and Se/Te-doped CoSb3 skutterudites synthesized by high-pressure technique", Journal of Alloys and Compounds, Vol. 647, pp. 295-302, (2015)
[11]. D. T. Morelli, G. P. Meisner, B. Chen, S. Hu and C. Uher, "Cerium filling and doping of cobalt triantimonide", Physical Review B, Vol. 56, pp. (1997)
[12]. X. Ye, G. Chen, B. Duan and P. Zhai, "Effect of Te–Se–S Triple Doping on the Thermoelectric Properties of CoSb3 Skutterudites", Journal of Electronic Materials, Vol. 44, pp. 1674-1678, (2014)
[13]. J. Yu, W.-Y. Zhao, B. Lei, D.-G. Tang and Q.-J. Zhang, "Effects of Ge Dopant on Thermoelectric Properties of Barium and Indium Double-Filled p-Type Skutterudites", Journal of Electronic Materials, Vol. 42, pp. 1400-1405, (2012)
[14]. S. Choi, K. Kurosaki, A. Harnwunggmoung, Y. Miyazaki, Y. Ohishi, H. Muta and S. Yamanaka, "Enhancement of thermoelectric properties of CoSb3 skutterudite by addition of Ga and In", Japanese Journal of Applied Physics, Vol. 54, pp. 111801, (2015)
[15]. X. Su, H. Li, G. Wang, H. Chi, X. Zhou, X. Tang, Q. Zhang and C. Uher, "Structure and Transport Properties of Double-Doped CoSb2.75Ge0.25–xTex(x= 0.125–0.20) with in Situ Nanostructure", Chemistry of Materials, Vol. 23, pp. 2948-2955, (2011)
[16]. G. Rogl, A. Grytsiv, P. Heinrich, E. Bauer, P. Kumar, N. Peranio, O. Eibl, J. Horky, M. Zehetbauer and P. Rogl, "New bulk p-type skutterudites DD0.7Fe2.7Co1.3Sb12−xXx (X=Ge, Sn) reaching ZT>1.3", Acta Materialia, Vol. 91, pp. 227-238, (2015)
[17]. T. Dahal, Y. Lan, Q. Jie, W. Liu, K. Dahal, L. Tang, C. Guo and Z. Ren, "Substitution of Antimony by Tin and Tellurium in n-Type Skutterudites CoSb2.8Sn x Te0.2−x", Jom, Vol. 66, pp. 2282-2287, (2014)
[18]. B. Duan, P. Zhai, L. Liu and Q. Zhang, "Thermoelectric Properties of Trisubstituted Skutterudite Co4Sb11Ge1−x−y Te x Se y Compounds", Journal of Electronic Materials, Vol. 41, pp. 1120-1124, (2011)
[19]. F. Duan, L. Zhang, J. Dong, J. Sakamoto, B. Xu, X. Li and Y. Tian, "Thermoelectric properties of Sn substituted p-type Nd filled skutterudites", Journal of Alloys and Compounds, Vol. 639, pp. 68-73, (2015)
[20]. B. R. Ortiz, C. M. Crawford, R. W. McKinney, P. A. Parilla and E. S. Toberer, "Thermoelectric properties of bromine filled CoSb3skutterudite", J. Mater. Chem. A, Vol. 4, pp. 8444-8450, (2016)
[21]. G. S. Nolas, J. Yang and H. Takizawa, "Transport properties of germanium-filled CoSb3", Applied Physics Letters, Vol. 84, pp. 5210-5212, (2004)
[22]. H. Kitagawa, M. Wakatsuki, H. Nagaoka, H. Noguchi, Y. Isoda, K. Hasezaki and Y. Noda, "Temperature dependence of thermoelectric properties of Ni-doped CoSb3", Journal of Physics and Chemistry of Solids, Vol. 66, pp. 1635-1639, (2005)
[23]. W.-S. Liu, B.-P. Zhang, J.-F. Li, H.-L. Zhang and L.-D. Zhao, "Enhanced thermoelectric properties in CoSb3-xTex alloys prepared by mechanical alloying and spark plasma sintering", Journal of Applied Physics, Vol. 102, pp. 103717, (2007)
[24]. W.-S. Liu, B.-P. Zhang, L.-D. Zhao and J.-F. Li, "Improvement of Thermoelectric Performance of CoSb3−xTex Skutterudite Compounds by Additional Substitution of IVB-Group Elements for Sb", Chemical Materials, Vol. 20, pp. 7526–7531, (2008)
[25]. 朱旭山, "熱電材料原理與其應用", 電子與材料雜誌, Vol. 22, pp. 78-89, (2005)
[26]. C. C. Li, F. Drymiotis, L. L. Liao, H. T. Hung, J. H. Ke, C. K. Liu, C. R. Kao and G. J. Snyder, "Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials", J. Mater. Chem. C, Vol. 3, pp. 10590-10596, (2015)
[27]. H. Kleinke, "New bulk Materials for Thermoelectric Power Generation: Clathrates and Complex Antimonides†", Chemistry of Materials, Vol. 22, pp. 604-611, (2010)
[28]. R. Chandra Mallik, E. Mueller and I.-H. Kim, "Thermoelectric properties of indium filled and germanium doped Co4Sb12 skutterudites", Journal of Applied Physics, Vol. 111, pp. 023708, (2012)
[29]. B. Duan, P. Zhai, C. Xu, S. Ding, P. Li and Q. Zhang, "Thermoelectric performance of tellurium and sulfur double-substituted skutterudite materials", Journal of Materials Science, Vol. 49, pp. 4445-4452, (2014)
[30]. B. Chen, J. H. Xu, C. Uher, D. T. Morelli, G. P. Meisner, J. P. Fleurial, T. Caillat and A. Borshchevsky, "Low-temperature transport properties of the filled skutterudites CeFe42 xCoxSb12", Physical Review B, Vol. 55, pp. 1476-1480, (1997)
[31]. H. Takizawa, K. Miura, M. Ito, T. Suzuki and T. Endo, "Atom insertion into the CoSb skutterudite host lattice under high pressure", Journal of Alloys and Compounds, Vol. 282, pp. 79-83, (1999)
[32]. G. S. Nolas, C. A. Kendziora and H. Takizawa, "Polarized Raman-scattering study of Ge and Sn-filled CoSb[sub 3]", Journal of Applied Physics, Vol. 94, pp. 7440, (2003)
[33]. K. Ishida and T. Nishizawa, "Co-Ge (Cobalt - Germanium) ", Binary Alloy Phase Diagrams II Ed., Ed. T.B. Massalski, Vol. 1.2, pp. (1990)
[34]. H. Okamoto, "Co-Sb (Cobalt - Antimony)", Journal of Phase Equilibria, Vol. 12, pp. 244-245, (1991)
[35]. H. Okamoto, "Ge-Sb (Germanium - Antimony)", Journal of Phase Equilibria, Vol. 22, pp. 91-92, (2001)
[36]. S.-w. Chen, Y.-k. Chen, H.-j. Wu, Y.-c. Huang and C.-m. Chen, "Co Solubility in Sn and Interfacial Reactions in Sn-Co/Ni Couples", Journal of Electronic Materials, Vol. 39, pp. 2418-2428, (2010)
[37]. G. P. Vassilev and K. I. Lilova, "Contribution to the thermodynamics of Co-Sn System", Archives of metallurgy and materials, Vol. 51(3), pp. 365-375, (2006)
[38]. H. Okamoto, "Sb-Sn (Antimony-Tin)", Journal of Phase Equilibria and Diffusion, Vol. 33, pp. 347-347, (2012)
[39]. http://www-crismat.ensicaen.fr/spip.php?rubrique952&lang=fr
[40]. https://www.netzsch-thermal-analysis.com/en/products-solutions/thermaldiffusivity-conductivity/lfa-467-hyperflash/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code