Responsive image
博碩士論文 etd-0625117-141415 詳細資訊
Title page for etd-0625117-141415
論文名稱
Title
第五世代通訊系統 低複雜度的期望傳播演算法的檢測器之研究
Study on Expectation Propagation as a Low Complexity Detector Algorithm for 5G Wireless System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
61
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-24
繳交日期
Date of Submission
2017-07-27
關鍵字
Keywords
期望傳播、檢測器、低複雜度、第五世代通訊、分散式
Expectation Propagation, Decentralized, 5G, Low complexity, Detector
統計
Statistics
本論文已被瀏覽 5712 次,被下載 0
The thesis/dissertation has been browsed 5712 times, has been downloaded 0 times.
中文摘要
在第五代無線通訊系統當中,傳送端將會具有大規模的天線數量,更進一步的說,5G系統將會使用數百根,甚至是數千根天線,也就是所謂的多輸入多輸出技術(MIMO),這樣的設計為系統帶來許多好處,比如最大化頻譜效率與更大的通道吞吐量,然而,一些演算法的高複雜度會導致系統難以被實作,這就是在實現這樣的高維度系統中最需要克服的難題。
當我們考慮在MIMO接收端的符元判斷問題,常見的訊號檢測器演算法如Maximum a Posteriori (MAP) 將因為複雜度問題而不能再被使用,這些常見的訊號檢測器算法的複雜度將會隨著系統的維度而有指數層級遞增,起因於這些演算法的每次疊代都需要計算遞迴迴圈,所以,一個低複雜度的檢測器演算法將會成為實現大規模MIMO系統的主要需求。
在這篇論文當中,我們有兩個主要貢獻,第一,我們提出一個名為期望傳播演算法的低複雜度檢測器算法來處理Sparse Code Multiple Access (SCMA) 檢測器問題。期望傳播演算法可以利用指數族函數來近似事後機率的邊際分佈,而指數族函數的機率比起近似前的函數更加容易計算,所以期望傳播演算法非常適合用來處理高維度與高等級調變的複雜系統。我們提出了理論分析來估測期望傳播演算法在SCMA系統的效能表現,可以看到其效能在傳送端與接收端天線數增加時可以貼近最佳檢測效能,有了這樣的理論根據,我們開始研究以星座點旋轉來增加自由度方法的必要性,我們發現在上行鏈路當中,我們也可以用不同的通道響應來增加不同使用者的可辨識度。因此,在SCMA編碼器上附加一個旋轉量並非必要,而當我們刪除這一個步驟,就可以在編碼與解碼兩端省下許多不必要的計算量。
第二,我們提出了一個名為分散式期望傳播的演算法來輔助大規模MIMO系統,這個演算法可以達到勝過Approximate Message Passing(AMP) 的效能,我們也研究了在不同反矩陣維度時的期望傳播演算法複雜度,原始演算法中,期望傳播 演算法的反矩陣維度等於傳送端天線的維度個數,藉由實現分散式系統,我們可以將反矩陣的維度減少至原始演算法的1/C倍,C代表的是分散式系統中的一個參數。我們也提供了分散式系統的理論分析。
Abstract
ABSTRACT
In near future fifth generation of wireless system (5G), a huge number of transceivers antennas will be employed. Speci cally, the 5G system will employ hundreds even thousands antennas that known as massive Multiple-Input Multiple-Output (MIMO) technology. It brings a lot of advantages such as maximization of spectral e ciency (SE) and larger channel capacity [1], [2]. However, the implementation of high dimensional antennas results a technical issue that needs to be solved. This mainly issue regarding unaffordable complexity.
Considering the symbols detection at the massive MIMO receiver side, the conventional symbols detector algorithm such as Maximum a Posteriori (MAP) can no longer be used due to the unaffordable complexity. The conventional detector algorithm complexity increases exponentially with the dimension of the system because it needs to calculate the feedback loop operation in every iteration. Therefore, a low complexity detector algorithm becomes the main requirement in order to implement the massive MIMO systems.
In this thesis, we propose two major contributions. First, we propose a low complexity detection method for the SCMA detector named the expectation propagation algorithm (EPA). The EPA approximates the marginal distribution of the posterior probability by using an exponential family [3]. Given that the probability in exponential family is easy to compute, the EPA is suitable to deal with high order and
dimensional system. We also provide theoretical analysis to evaluate the performance
of EPA SCMA. We show that the EPA for SCMA can achieve near optimal detection
performance as the numbers of transmit and receive antennas grow. With the theoretical promise, we investigate the necessity of constellation rotation, which is used to increase the degree of freedom [4, 5]. We show that for the uplink scheme, channel responses from di erent users vary and thus increase the identi ability of each user.Therefore, appending a rotation value in SCMA encoder is unnecessary. The removal of the rotation, value can omit many unnecessary calculations not only in decoding but also in SCMA encoding.
Second, we propose a novel algorithm i.e. decentralized expectation propagation algorithm (EPA) to support massive MU-MIMO system which outperforms decentralized AMP [6]. We also investigate the EPA complexity which lies on the dimension of the EP inverse matrix. Originally, the dimension of the EP inverse matrix is equal with the dimension of transmitter antennas. By implementing the partially decentralized system, we signi cantly reduce the dimension of the inverse matrix to become C times smaller than the original one, where C denotes the number of the decentralized system
we have. In addition, we provide the theoretical analysis for each decentralized EP systems.
目次 Table of Contents
TABLE OF CONTENTS
Page
論文審定書 ........................................................................................................................................ i
ACKNOWLEDGMENTS ..................................................................................................... ii
ABSTRACT .......................................................................................................................... iii
TABLE OF CONTENT ........................................................................................................ vi
LIST OF TABLES ............................................................................................................ viii
LIST OF FIGURES ......................................................................................................... ix
NOTATIONS ................................................................................................................... x
ABBREVIATIONS ......................................................................................................... xi
1 Introduction and Motivation .......................................................................................... 1
1.1 Multiple Input Multiple Output System ................................................................. 1
1.2 Symbol Detection in Massive MIMO Systems ...................................................... 3
1.3 Thesis Organization............................................................................................... 3
2 Expectation Propagation Algorithm and MU-MIMO Systems .................................... 5
2.1 Single Loop Expectation Propagation ................................................................... 5
2.1.1 EP Message Passing ............................................................................... 7
2.1.2 Detail of EP Algorithm .......................................................................... 9
2.1.3 EP Computational Complexity............................................................. 10
2.2 Future Work For Expectation Propagation ......................................................... 13
2.2.1 Double Loop EP ................................................................................... 13
2.2.2 Approximation of Inverse matrix ......................................................... 14
2.3 EP State Evolution .............................................................................................. 15
2.4 Massive MU-MIMO Systems ............................................................................. 16
3 Implementing Expectation Propagation on Next Generation Wireless Systems ........ 18
3.1 MPA SCMA and EPA SCMA ............................................................................ 18
3.1.1 System Model ....................................................................................... 19
3.1.2 MPA SCMA ......................................................................................... 21
3.1.3 EPA SCMA .......................................................................................... 23
3.1.4 MPA and EPA Complexity Analysis ................................................... 23
vii
3.2 Decentralized Expectation Propagation in massive MU-MIMO System ........... 24
3.2.1 System Model ....................................................................................... 25
3.2.2 Fully Decentralized Expectation Propagation (FD-EP) Algorithm ..... 26
3.2.3 Partial Decentralized Expectation Propagation (PD-EP) Algorithm ... 30
3.2.4 Decentralized EP Performance Analysis.............................................. 31
4 Experimental Result and Discussion .......................................................................... 33
4.1 EPA SCMA ......................................................................................................... 33
4.2 Decentralized EP ................................................................................................. 36
5 Summary ..................................................................................................................... 43
LIST OF REFERENCES ............................................................................................... 45
參考文獻 References
LIST OF REFERENCES
[1] L. Zheng, P. Viswanath, and D. Tse. Diversity and multiplexing: a fundamental
tradeo in multiple-antenna channels. IEEE Transactions on Information
Theory, 49(5):1073{1095, May 2003.
[2] A. Goldsmith. Wireless Communications. Cambridge University Press, United
Kingdom, 2005.
[3] J. Cspedes, P. M. Olmos, M. Snchez-Fernndez, and F. Perez-Cruz. Expectation
propagation detection for high-order high-dimensional mimo systems. IEEE
Transactions on Communications, 62(8):2840{2849, Aug 2014.
[4] D. Cai, P. Fan, X. Lei, Y. Liu, and D. Chen. Multi-dimensional scma codebook
design based on constellation rotation and interleaving. In 2016 IEEE 83rd
Vehicular Technology Conference (VTC Spring), pages 1{5, Chengdu, China,
May 2016.
[5] J. van de Beek and B. M. Popovic. Multiple access with low-density signatures. In
GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference, pages
1{6, Kista, Sweden, nov 2009.
[6] Charles Jeon, Kaipeng Li, Joseph R. Cavallaro, and Christoph Studer. On the
achievable rates of decentralized equalization in massive MU-MIMO systems,
2017.
[7] P. Robertson, E. Villebrun, and P. Hoeher. A comparison of optimal and suboptimal
map decoding algorithms operating in the log domain. IEEE Interna-
tional Conference on Communications, 2:1009{1013, June 1995.
[8] William Stallings. Data and Computer Communications (8th Edition). Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2006.
[9] E. Dahlman, S. Parkvall, J. Skold, and P. Beming. 3G evolution: HSPA and
LTE for mobile broadband. Academic press, Cambridge, Massachusetts, United
States, 2010.
[10] Ieee standard for information technology{ local and metropolitan area networks{
speci c requirements{ part 11: Wireless lan medium access control (mac)and
physical layer (phy) speci cations amendment 5: Enhancements for higher
throughput. IEEE Std 802.11n-2009 (Amendment to IEEE Std 802.11-2007 as
amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-
2008, and IEEE Std 802.11w-2009), pages 1{565, Oct 2009.
[11] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski. Five disruptive
technology directions for 5g. IEEE Communications Magazine, 52(2):74{
80, February 2014.
[12] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential
families, and variational inference. Found. Trends Mach Learn, 1(1-2):1{305, jan
2008.
[13] Xiangming Meng, Sheng Wu, Linling Kuang, and Jianhua Lu. Concise derivation
of complex bayesian approximate message passing via expectation algorithm.
2015.
[14] G. Caire, R. Muller, and T. Tanaka. Iterative multiuser joint decoding: optimal
power allocation and low-complexity implementation. IEEE Transactions on
Information Theory, 50(9):1950{1973, Sept 2004.
[15] A. Sanderovich, M. Peleg, and S. Shamai. Ldpc coded mimo multiple access with
iterative joint decoding. IEEE Transactions on Information Theory, 51(4):1437{
1450, Sept 2005.
[16] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, Cambridge, Massachusetts, London, England, 2006.
[17] D. Baron, S. Sarvotham, and R. G. Baraniuk. Bayesian compressive sensing via
belief propagation. IEEE Transactions on Signal Processing, 58(1):269{280, Jan
2010.
[18] Manfred Opper and Winther Ole. Expectation consistent approximate inference.
J. Mach. Learn. Res., 6(28):2177{2204, Dec 2005.
[19] W. Wang, Z. Wang, Q. Guo, C. Zhang, and P. Sun. Doped expectation propagation
for low-complexity message passing based detection. Electronics Letters,
53(6):403{405, March 2017.
[20] Lin Lin, Jianfeng Lu, Lexing Ying, Roberto Car, and Weinan E. Fast algorithm
for extracting the diagonal of the inverse matrix with application to the electronic
structure analysis of metallic systems. Commun. Math. Sci, 7(3):755{777, May
2009.
[21] Balmand Samuel and Dalalyan Arnak S. On estimation of the diagonal elements
of a sparse precision matrix. 2016.
[22] Manfred Opper, Ulrich Paquet, and Ole Winther. Improving on expectation
propagation. In Proceedings of the 21st International Conference on Neural In-
formation Processing Systems, NIPS'08, July 2008.
[23] Suchun Zhang, Chao-Kai Wen, Keigo Takeuchi, and Shi Jin. Orthogonal approximate
message passing for gfdm detection. 2017.
[24] Jok Man Tang and Yousef Saad. A probing method for computing the diagonal
of a matrix inverse. Numerical Lin. Alg. with Applic., 19:485{501, 2012.
[25] A.M.Erisman I.S.Du and J.K. Reid. Direct Methods for Sparse Matrices. Oxford
University Press, New York, USA, 1986.
[26] X. Yuan, J. Ma, and L. Ping. Energy-spreading-transform based mimo systems:
Iterative equalization, evolution analysis, and precoder optimization. IEEE
Transactions on Wireless Communications, 13(9):5237{5250, Sept 2014.
[27] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs
with applications to compressed sensing. IEEE Transactions on Information
Theory, 57(2):764{785, Feb 2011.
[28] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta. Energy and spectral e ciency
of very large multiuser mimo systems. IEEE Transactions on Communications,
61(4):1436{1449, April 2013.
[29] D. Gesbert, M. Kountouris, R. W. Heath, Chan-Byoung Chae, and T. Salzer.
Shifting the mimo paradigm. IEEE Signal Processing Magazine, 24:36{46, Sept
2007.
[30] N. H. M. Adnan, I. M. Ra qul, and A. H. M. Z. Alam. Massive mimo for
fth generation (5g): Opportunities and challenges. In 2016 International Con-
ference on Computer and Communication Engineering (ICCCE), pages 47{52,
July 2016.
[31] X. Li, E. Bjrnson, S. Zhou, and J.Wang. Massive mimo with multi-antenna users:
When are additional user antennas bene cial? In Proceedings of the 18th Annual
International Conference on Mobile Computing and Networking, Mobicom '12,
pages 1{6, May 2016.
[32] J. Ni and S. Tatikonda. Analyzing product-form stochastic networks via factor
graphs and the sum-product algorithm. IEEE Transactions on Communications,
55(8):1588{1597, Aug 2007.
[33] S. Zhang, X. Xu, L. Lu, Y.Wu, G. He, and Y. Chen. Sparse code multiple access:
An energy e cient uplink approach for 5g wireless systems. In 2014 IEEE Global
Communications Conference, pages 4782{4787, Shanghai, China, Dec 2014.
[34] Jia Zou, Hui Zhao, and Wenxiu Zhao. Low-complexity interference cancellation
receiver for sparse code multiple access. In 2015 IEEE 6th International Sym-
posium on Microwave, Antenna, Propagation, and EMC Technologies (MAPE),
pages 277{282, San Diego, USA, Oct 2015.
[35] M. Taherzadeh, H. Nikopour, A. Bayesteh, and H. Baligh. Scma codebook design.
In 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall), pages 1{5,
Ottawa, Ontario, Canada, Sept 2014.
[36] L. Yang, Y. Liu, and Y. Siu. Low complexity message passing algorithm for scma
system. IEEE Communications Letters, 20(12):2466{2469, Dec 2016.
[37] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang. An overview
of massive mimo: Bene ts and challenges. IEEE Journal of Selected Topics in
Signal Processing, 8(5):742{758, Oct 2014.
[38] Clayton Shepard, Hang Yu, Narendra Anand, Erran Li, Thomas Marzetta,
Richard Yang, and Lin Zhong. Argos: Practical many-antenna base stations.
In Proceedings of the 18th Annual International Conference on Mobile Comput-
ing and Networking, Mobicom '12, pages 53{64, 2012.
[39] Y. H. Nam, B. L. Ng, K. Sayana, Y. Li, J. Zhang, Y. Kim, and J. Lee. Fulldimension
mimo (fd-mimo) for next generation cellular technology. IEEE Com-
munications Magazine, 51(6):172{179, June 2013.
[40] K. Li, R. Skaran, Y. Chen, J. R. Cavallaro, T. Goldstein, and C. Studer. Decentralized
beamforming for massive mu-mimo on a gpu cluster. In 2016 IEEE
Global Conference on Signal and Information Processing (GlobalSIP), pages 590{
594, Dec 2016.
[41] H. Nikopour and H. Baligh. Sparse code multiple access. In 2013 IEEE 24th
Annual International Symposium on Personal, Indoor, and Mobile Radio Com-
munications (PIMRC), pages 332{336, Ottawa, Ontario, Canada, Sept 2013.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.226.222.12
論文開放下載的時間是 校外不公開

Your IP address is 18.226.222.12
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code