Responsive image
博碩士論文 etd-0625118-171032 詳細資訊
Title page for etd-0625118-171032
論文名稱
Title
可攜式多人同步腦電訊號量測平臺開發
Developing a Portable Multi-Subject Electroencephalogram Acquisition Platform
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
54
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-07-25
關鍵字
Keywords
多人同步腦電訊號量測、合作腦機介面、事件相關電位、腦電訊號處理、類比前端電路
multi-individual electroencephalogram acquisition, collaborative brain computer interface, event-related potential, analog front end, EEG signal processing
統計
Statistics
本論文已被瀏覽 5682 次,被下載 74
The thesis/dissertation has been browsed 5682 times, has been downloaded 74 times.
中文摘要
合作腦機介面(collaborative brain-computer interface, cBCI)主要是以多套腦電量測裝置同步量測多位受試者之腦電訊號進行訊號特徵分析,其目的是短時間內合併多人腦電訊號並分析,提升腦電訊號之訊號雜訊比及腦機介面的分類準確度。目前合作腦機介面相關研究皆以多套商品化之腦電量測裝置及配戴濕式腦電帽實現,導致成本提高、耗費人力與時間。因此,本研究旨在開發具備低成本、可攜式,及乾式電極之多人同步腦電量測裝置。
本研究所發展之多人同步平臺是以行為刺激平臺、腦電量測裝置,及資料接收平臺所構成。系統驗證方面主要針對裝置功耗、前端電路頻率響應、裝置訊號與事件標記同步穩定性,及多人同步腦電實驗進行測試與驗證。本研究現階段建構三人同步腦電訊號量測系統,進行為期10天的聽覺奇異刺激實驗(auditory oddball paradigm)同時誘發三人大腦選擇性注意力相關的P300腦電訊號,並以事件相關電位(event-related potential, ERP)分析方法,完成跨人及跨天之事件相關電位分析。
根據驗證結果,裝置於9-V電池供電可運作3.5小時(功耗約為250 mW),而訊號帶通之低頻(0.6 Hz)及高頻(56.5 Hz)截止頻率於實際量測與電路模擬誤差分別為2.5 dB與0.4 dB。至於訊號與事件同步測試,於30分鐘1800筆間隔一秒事件標記測試,單套裝置平均事件間隔誤差為2.8 ± 1.86毫秒,最大誤差為15毫秒(出現機率為0.05%),而跨裝置平均事件間隔誤差為1.44 ± 2毫秒,最大誤差為16毫秒(出現機率為0.05%)。事件相關電位分析顯示,單人單天結果大都可觀察到選擇性注意力所誘發的P300振幅,其訊號雜訊比具有統計顯著性(p<0.01),而跨人及跨天之平均事件相關電位皆可明顯觀察到N100及P300成分,因而成功的驗證本研究所發展之多人同步腦電量測平臺的有效性。未來,不僅加速多人腦電實驗及研究的進行,亦能提升合作腦機介面實際應用的可行性,例如評估學生參與課程的專心程度、探索社交行為,及電玩競賽。

關鍵字:合作腦機介面、多人同步腦電訊號量測、事件相關電位、腦電訊號處理、類比前端電路。
Abstract
Collaborative brain computer interface (cBCI) is an emerging track in BCI research to make a control decision through the engagement of electroencephalogram (EEG) from multiple individuals concurrently. Leveraging multi-individual EEG signal enables to boost signal-to-noise ratio and improve the BCI performance with respect to a conventional single-individual BCI. Most cBCI works were done by employing multiple laboratory-oriented EEG-sensing devices with wet electrodes, which led to cost-inefficient, time-consuming and labor-intensive setup. This work thus developed a cost-efficient multi-individual EEG acquisition platform, featuring dry electrodes and wireless transmission.
The proposed multi-individual EEG system is composed of a behavioral stimulation platform, portable EEG acquisition devices, and a data receiving platform. The core EEG device was thoroughly verified by the aspects of power consumption, frequency responses, synchronization of EEG and event, and multi-individual EEG acquisition. At this stage, the system implemented a scenario for three individuals and verified the practicality through a 10-day auditory oddball paradigm. Event related potential (ERP) analysis was then performed to derive attention-related EEG responses across individuals and days.
The results showed that the device could be functional for 3.5 hours with a 9-V battery (power consumption was about 250 mW), and its actual frequency response of the designed bandpass filter (0.6 ~ 56.5 Hz) differed from the ideal simulation with an acceptable range less than 2.5 dB at cut-off frequencies. As for the EEG-event synchronization outcome derived in a 30-min test of 1800 events per second, the averaged error of signal devices was 2.8 ± 1.86 ms with a maximum of 15 ms (occurrence was only 0.05%), whereas the cross-device counterpart led to an averaged error 1.44 ± 2 ms, with a maximum of 16 ms (0.05%). Furthermore, the ERP results showed that most single-day EEG sessions exhibited a prominent P300 amplitude for target sounds against non-target sounds (p<0.01). The cross-individual and cross-day ERP results consistently exhibited N100 and P300 components as well. The above outcomes evidently demonstrated the integrity of the multi-individual EEG acquisition system developed in the present work. In the feature, the developed system not only facilitates multi-individual brain research as well as practical cBCI applications, such as monitoring students’ attention in class, social activities, and neurogaming.

Keywords: collaborative brain computer interface, multi-individual electroencephalogram acquisition, event-related potential, EEG signal processing, analog front end.
目次 Table of Contents
目錄
論文審定書 i
目錄 ii
圖目錄 iv
表目錄 v
誌謝 vi
中文摘要 vii
Abstract viii
第一章、 緒論 1
1.1 腦電訊號基礎介紹與應用 1
1.1.1 腦電訊號簡述 1
1.1.2 腦電訊號量測方法 2
1.1.3 事件相關電位介紹與應用 3
1.1.4 腦機介面介紹與研究趨勢 5
1.2 合作腦機介面相關研究 7
1.3 研究動機與貢獻 8
第二章、 系統設計與驗證 10
2.1 多人同步腦電量測系統架構 10
2.1.1 行為刺激平臺 10
2.1.2 腦電量測裝置 11
2.1.3 資料接收平臺 13
2.2 系統驗證 14
2.2.1 前端類比電路頻率響應 14
2.2.2 模擬訊號與事件同步穩定性 14
2.3 三人同步腦電實驗 15
2.3.1 受試者 16
2.3.2 腦電訊號量測 16
2.3.3 聽覺奇異實驗流程 16
2.3.4 事件相關電位分析方法與驗證 17
第三章、 驗證結果 19
3.1 單套腦電裝置驗證結果 19
3.1.1 運作時間與電池電壓之相對曲線圖 19
3.1.2 前端類比電路頻率響應分析結果 19
3.1.3 事件標記分析結果 20
3.1.4 事件標記與測試訊號之同步化分析結果 20
3.2 三套腦電裝置驗證結果 21
3.2.1 跨裝置事件標記分析結果 21
3.2.2 跨裝置事件標記與測試訊號同步化分析結果 22
3.3 三人同步腦電實驗分析結果 22
3.3.1 事件相關電位時域及影像分析結果 22
3.3.2 事件相關電位統計分析結果 24
第四章、 討論與未來展望 28
4.1 討論 28
4.1.1 實際量測與電路模擬腦電量測裝置頻率響應的差異 28
4.1.2 單裝置及跨裝置事件標記與量測訊號之同步穩定性 28
4.1.3 探討大腦誘發N100與P300事件相關電位現象 29
4.2 未來展望 30
第五章、 結論 32
參考文獻 33







圖目錄
圖1 1 腦電極位置側面視圖(10-20 system) 2
圖1 2 腦電極位置俯視圖 3
圖1 3 腦機介面系統架構 5
圖2 1 多人同步腦電量測系統架構圖 10
圖2 2 腦電量測裝置架構圖 11
圖2 3 前端類比電路設計 12
圖2 4 本研究設計之腦電量測裝置 13
圖2 5 腦電訊號資料紀錄格式 14
圖2 6 三人同步腦電量測系統 15
圖2 7 乾式電極擺放位置示意圖及本研究所製作乾式腦電帽 16
圖2 8 三人同步腦電實驗示意圖 17
圖2 9 本研究設計之聽覺奇異刺激圖形化界面及實驗流程圖 17
圖3 1 (A)裝置運作時間與電池電壓之相對曲線圖及(B)前端電路頻率響應測試結果 19
圖3 2 事件間隔誤差分布 20
圖3 3 跨裝置事件間隔差分布圖 21
圖3 4 受試者I的第一天事件相關電位分析結果 23
圖3 5 單人10天及三人單天平均之事件相關電位分析結果 25
圖3 6 單人10天平均及三人10天平均之事件相關電位分析結果 26
圖3 7 單人10天、單人10天平均、三人單天平均,及三人10天平均之事件相關電位統計分析結果 27




表目錄
表3 1 測試事件標記之接收數量及事件間隔誤差表 20
表3 2 三套裝置個別分析事件標記與測試訊號同步化的平均結果 21
表3 3 跨裝置事件間隔差分析結果 21
表3 4 選擇通道四當作跨裝置之事件標記與測試訊號同步化的平均結果 22
表3 5 三人10天P300訊號雜訊比平均結果 23
表4 1 聽/視覺奇異刺激腦電實驗之相關文獻總整理 29
參考文獻 References
1. Michael J. Aminoff," Chapter 3 - Electroencephalography: General Principles and Clinical Applications", in Aminoff's Electrodiagnosis in Clinical Neurology (Sixth Edition). W.B. Saunders: London. p. 37-84, 2012.
2. L. F. Haas," Hans Berger (1873–1941), Richard Caton (1842–1926), and electroencephalography", Journal of Neurology, Neurosurgery &amp;amp; Psychiatry. vol. 74(1), p. 9, 2003.
3. Gábor Stefanics, Balázs Hangya, István Hernádi, István Winkler, Péter Lakatos, and István Ulbert," Phase Entrainment of Human Delta Oscillations Can Mediate the Effects of Expectation on Reaction Speed", The Journal of Neuroscience. vol. 30(41), p. 13578, 2010.
4. Rami N. Khushaba, Luke Greenacre, Sarath Kodagoda, Jordan Louviere, Sandra Burke, and Gamini Dissanayake," Choice modeling and the brain: A study on the Electroencephalogram (EEG) of preferences", Expert Systems with Applications. vol. 39(16), p. 12378-12388, 2012.
5. Thalia Harmony," The functional significance of delta oscillations in cognitive processing", Frontiers in Integrative Neuroscience. vol. 7(83), 2013.
6. Gennady G. Knyazev," EEG delta oscillations as a correlate of basic homeostatic and motivational processes", Neuroscience & Biobehavioral Reviews. vol. 36(1), p. 677-695, 2012.
7. B. Rael Cahn and John Polich," Meditation states and traits: EEG, ERP, and neuroimaging studies", Psychological bulletin. vol. 132(2), p. 180-211, 2006.
8. Lawrence M. Ward," Synchronous neural oscillations and cognitive processes", Trends in Cognitive Sciences. vol. 7(12), p. 553-559, 2003.
9. C. D. Tesche and J. Karhu," Theta oscillations index human hippocampal activation during a working memory task", Proceedings of the National Academy of Sciences. vol. 97(2), p. 919, 2000.
10. Rami N Khushaba, Chelsea Wise, Sarath Kodagoda, Jordan Louviere, Barbara E Kahn, and Claudia Townsend," Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking", Expert Systems with Applications. vol. 40(9), p. 3803-3812, 2013.
11. C. Ervin Davis, Jessica D. Hauf, D. Qiang Wu, and D. Erik Everhart," Brain function with complex decision making using electroencephalography", International Journal of Psychophysiology. vol. 79(2), p. 175-183, 2011.
12. Michal Teplan," Fundamentals of EEG measurement", Measurement science review. vol. 2(2), p. 1-11, 2002.
13. P. Campisi and D. L. Rocca," Brain waves for automatic biometric-based user recognition", IEEE Transactions on Information Forensics and Security. vol. 9(5), p. 782-800, 2014.
14. Stuart N. Baker," Oscillatory interactions between sensorimotor cortex and the periphery", Current Opinion in Neurobiology. vol. 17(6), p. 649-655, 2007.
15. Manuel Zaepffel, Romain Trachel, Bjørg Elisabeth Kilavik, and Thomas Brochier," Modulations of EEG Beta Power during Planning and Execution of Grasping Movements", PLoS ONE. vol. 8(3), p. e60060, 2013.
16. Manuel Vázquez Marrufo, Encarna Vaquero, Marı́a Jesús Cardoso, and Carlos M. Gómez," Temporal evolution of α and β bands during visual spatial attention", Cognitive Brain Research. vol. 12(2), p. 315-320, 2001.
17. Bahar Güntekin and Erol Basar," Emotional face expressions are differentiated with brain oscillations", International Journal of Psychophysiology. vol. 64(1), p. 91-100, 2007.
18. Murat Özgören, Canan Başar-Eroğlu, and Erol Başar," Beta oscillations in face recognition", International Journal of Psychophysiology. vol. 55(1), p. 51-59, 2005.
19. Christoph S. Herrmann, Ingo Fründ, and Daniel Lenz," Human gamma-band activity: A review on cognitive and behavioral correlates and network models", Neuroscience & Biobehavioral Reviews. vol. 34(7), p. 981-992, 2010.
20. Christoph S. Herrmann, Matthias H. J. Munk, and Andreas K. Engel," Cognitive functions of gamma-band activity: memory match and utilization", Trends in Cognitive Sciences. vol. 8(8), p. 347-355, 2004.
21. Ole Jensen, Jochen Kaiser, and Jean-Philippe Lachaux," Human gamma-frequency oscillations associated with attention and memory", Trends in Neurosciences. vol. 30(7), p. 317-324, 2007.
22. Xiaoxuan Jia and Adam Kohn," Gamma Rhythms in the Brain", PLoS Biology. vol. 9(4), p. e1001045, 2011.
23. Marc W. Howard, Daniel S. Rizzuto, Jeremy B. Caplan, Joseph R. Madsen, John Lisman, Richard Aschenbrenner-Scheibe, Andreas Schulze-Bonhage, and Michael J. Kahana," Gamma Oscillations Correlate with Working Memory Load in Humans", Cerebral Cortex. vol. 13(12), p. 1369-1374, 2003.
24. Matthias M. Müller, Thomas Gruber, and Andreas Keil," Modulation of induced gamma band activity in the human EEG by attention and visual information processing", International Journal of Psychophysiology. vol. 38(3), p. 283-299, 2000.
25. Peter J. Uhlhaas and Wolf Singer," Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology", Neuron. vol. 52(1), p. 155-168, 2006.
26. H. H. Jasper," The ten twenty electrode system of the international federation", Electroencephalography and Clinical Neurophysiology. vol. 10, p. 371-375, 1958.
27. E. K. Vogel and S. J. Luck," The visual N1 component as an index of a discrimination process", Psychophysiology. vol. 37(2), p. 190-203, 2000.
28. Shravani Sur and V. K. Sinha," Event-related potential: An overview", Industrial Psychiatry Journal. vol. 18(1), p. 70-73, 2009.
29. Terence W Picton," The P300 wave of the human event-related potential", Journal of clinical neurophysiology. vol. 9, p. 456-456, 1992.
30. Salil H Patel and Pierre N Azzam," Characterization of N200 and P300: selected studies of the event-related potential", International journal of medical sciences. vol. 2(4), p. 147, 2005.
31. T. W. Picton, S. Bentin, P. Berg, E. Donchin, S. A. Hillyard, R. Johnson, G. A. Miller, W. Ritter, D. S. Ruchkin, M. D. Rugg, and M. J. Taylor," Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria", Psychophysiology. vol. 37(2), p. 127-152, 2000.
32. Steven J. Luck, Geoffrey F. Woodman, and Edward K. Vogel," Event-related potential studies of attention", Trends in Cognitive Sciences. vol. 4(11), p. 432-440, 2000.
33. Matthias Weisbrod, Markus Kiefer, Frank Marzinzik, and Manfred Spitzer," Executive control is disturbed in schizophrenia: evidence from event-related potentials in a Go/NoGo task", Biological Psychiatry. vol. 47(1), p. 51-60, 2000.
34. Stefan Kaiser, Joerg Unger, Markus Kiefer, Jaana Markela, Christoph Mundt, and Matthias Weisbrod," Executive control deficit in depression: event-related potentials in a Go/Nogo task", Psychiatry Research: Neuroimaging. vol. 122(3), p. 169-184, 2003.
35. Hirokazu Bokura, Shuhei Yamaguchi, and Shotai Kobayashi," Event-related potentials for response inhibition in Parkinson's disease", Neuropsychologia. vol. 43(6), p. 967-975, 2005.
36. Chella Kamarajan, Bernice Porjesz, Kevin A. Jones, Keewhan Choi, David B. Chorlian, Ajayan Padmanabhapillai, Madhavi Rangaswamy, Arthur T. Stimus, and Henri Begleiter," Alcoholism is a disinhibitory disorder: neurophysiological evidence from a Go/No-Go task", Biological Psychology. vol. 69(3), p. 353-373, 2005.
37. Chiou-Lian Lai, Ruey-Tay Lin, Li-Min Liou, and Ching-Kuan Liu," The role of event-related potentials in cognitive decline in Alzheimer’s disease", Clinical Neurophysiology. vol. 121(2), p. 194-199, 2010.
38. Mohammad Ali Nazari, Zohreh Gholami Doborjeh, Toktam Oghaz, Javad Fadardi, and Amir Yazdi, Evaluation of Consumers Preference to the Brands of Beverage by Means of ERP Pre-comprehension Component, in International Conference on Global Economy, Commerce and Service Science. 2014.
39. Fu Guo, Yi Ding, Tianbo Wang, Weilin Liu, and Haizhe Jin," Applying event related potentials to evaluate user preferences toward smartphone form design", International Journal of Industrial Ergonomics. vol. 54, p. 57-64, 2016.
40. Sarah N. Abdulkader, Ayman Atia, and Mostafa-Sami M. Mostafa," Brain computer interfacing: Applications and challenges", Egyptian Informatics Journal. vol. 16(2), p. 213-230, 2015.
41. J. van Erp, F. Lotte, and M. Tangermann," Brain-Computer Interfaces: Beyond Medical Applications", Computer. vol. 45(4), p. 26-34, 2012.
42. Jonathan R. Wolpaw, Niels Birbaumer, Dennis J. McFarland, Gert Pfurtscheller, and Theresa M. Vaughan," Brain–computer interfaces for communication and control", Clinical Neurophysiology. vol. 113(6), p. 767-791, 2002.
43. A. S. Royer, A. J. Doud, M. L. Rose, and B. He," EEG Control of a Virtual Helicopter in 3-Dimensional Space Using Intelligent Control Strategies", IEEE Transactions on Neural Systems and Rehabilitation Engineering. vol. 18(6), p. 581-589, 2010.
44. L. Bonnet, F. Lotte, and A. Lécuyer," Two Brains, One Game: Design and Evaluation of a Multiuser BCI Video Game Based on Motor Imagery", IEEE Transactions on Computational Intelligence and AI in Games. vol. 5(2), p. 185-198, 2013.
45. Daly Ian, Williams Duncan, Kirke Alexis, Weaver James, Malik Asad, Hwang Faustina, Miranda Eduardo, and J. Nasuto Slawomir," Affective brain–computer music interfacing", Journal of Neural Engineering. vol. 13(4), p. 046022, 2016.
46. M. Gomez-Rodriguez, M. Grosse-Wentrup, J. Hill, A. Gharabaghi, B. Schölkopf, and J. Peters," Towards brain-robot interfaces in stroke rehabilitation". in IEEE International Conference on Rehabilitation Robotics, p. 1-6, 2011.
47. G. Edlinger, C. Holzner, C. Guger, C. Groenegress, and M. Slater," Brain-computer interfaces for goal orientated control of a virtual smart home environment". in 2009 4th International IEEE/EMBS Conference on Neural Engineering, p. 463-465, 2009.
48. C. T. Lin, L. W. Ko, M. H. Chang, J. R. Duann, J. Y. Chen, T. P. Su, and T. P. Jung," Review of Wireless and Wearable Electroencephalogram Systems and Brain-Computer Interfaces – A Mini-Review", Gerontology. vol. 56(1), p. 112-119, 2010.
49. Seungchan Lee, Younghak Shin, Soogil Woo, Kiseon Kim, and Heung-No Lee," Review of Wireless Brain-Computer Interface Systems ", Brain-Computer Interface Systems Reza Fazel-Rezai, IntechOpen, 2013.
50. T. J. Sullivan, S. R. Deiss, Jung Tzyy-Ping, and G. Cauwenberghs," A brain-machine interface using dry-contact, low-noise EEG sensors". in 2008 IEEE International Symposium on Circuits and Systems, p. 1986-1989, 2008.
51. C. T. Lin, L. W. Ko, J. C. Chiou, J. R. Duann, R. S. Huang, S. F. Liang, T. W. Chiu, and T. P. Jung," Noninvasive Neural Prostheses Using Mobile and Wireless EEG", Proceedings of the IEEE. vol. 96(7), p. 1167-1183, 2008.
52. Thorsten Zander, Moritz Lehne, Klas Ihme, Sabine Jatzev, Joao Correia, Christian Kothe, Bernd Picht, and Femke Nijboer," A Dry EEG-System for Scientific Research and Brain–Computer Interfaces", Frontiers in Neuroscience. vol. 5(53), 2011.
53. L. Brown, J. van de Molengraft, R. F. Yazicioglu, T. Torfs, J. Penders, and C. Van Hoof," A low-power, wireless, 8-channel EEG monitoring headset". in 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, p. 4197-4200, 2010.
54. Chin-Teng Lin, Li-Wei Ko, Che-Jui Chang, Yu-Te Wang, Chia-Hsin Chung, Fu-Shu Yang, Jeng-Ren Duann, Tzyy-Ping Jung, and Jin-Chern Chiou," Wearable and Wireless Brain-Computer Interface and Its Applications". in Foundations of Augmented Cognition. Neuroergonomics and Operational Neuroscience, p. 741-748, 2009.
55. Wang Yu-Te, Wang Yijun, and Jung Tzyy-Ping," A cell-phone-based brain–computer interface for communication in daily life", Journal of Neural Engineering. vol. 8(2), p. 025018, 2011.
56. C. T. Lin, C. J. Chang, B. S. Lin, S. H. Hung, C. F. Chao, and I. J. Wang," A Real-Time Wireless Brain–Computer Interface System for Drowsiness Detection", IEEE Transactions on Biomedical Circuits and Systems. vol. 4(4), p. 214-222, 2010.
57. Andrew Campbell, Tanzeem Choudhury, Shaohan Hu, Hong Lu, Matthew K. Mukerjee, Mashfiqui Rabbi, and Rajeev D.S. Raizada," NeuroPhone: brain-mobile phone interface using a wireless EEG headset". in Proceedings of the second ACM SIGCOMM workshop on Networking, systems, and applications on mobile handhelds, p. 3-8, 2010.
58. Lun-De Liao, Chi-Yu Chen, I. Jan Wang, Sheng-Fu Chen, Shih-Yu Li, Bo-Wei Chen, Jyh-Yeong Chang, and Chin-Teng Lin," Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors", Journal of NeuroEngineering and Rehabilitation. vol. 9(1), p. 5, 2012.
59. K. Holewa and A. Nawrocka," Emotiv EPOC neuroheadset in brain - computer interface". in Proceedings of the 2014 15th International Carpathian Control Conference (ICCC), p. 149-152, 2014.
60. C. Kevin Tseng, Bor-Shing Lin, M. Alice Wong, and Bor-Shyh Lin," Design of a Mobile Brain Computer Interface-Based Smart Multimedia Controller", Sensors. vol. 15(3), 2015.
61. J. Chun, B. Bae, and S. Jo," BCI based hybrid interface for 3D object control in virtual reality". in 2016 4th International Winter Conference on Brain-Computer Interface (BCI), p. 1-4, 2016.
62. A. G. Yehia, S. Eldawlatly, and M. Taher," WeBB: A brain-computer interface web browser based on steady-state visual evoked potentials". in 2017 12th International Conference on Computer Engineering and Systems (ICCES), p. 52-57, 2017.
63. Humaira Nisar, Hong-Way Khow, and Kim-Ho Yeap," Brain computer interface: Controlling a robotic arm using facial expressions", Turkish Journal of Electrical Engineering & Computer Sciences. vol. 26(2), p. 707-720, 2018.
64. Zhihua Wang, Yang Yu, Ming Xu, Yadong Liu, Erwei Yin, and Zongtan Zhou," Towards a Hybrid BCI Gaming Paradigm Based on Motor Imagery and SSVEP", International Journal of Human–Computer Interaction, p. 1-9, 2018.
65. Yijun Wang and Tzyy-Ping Jung," A Collaborative Brain-Computer Interface for Improving Human Performance", PLoS ONE. vol. 6(5), p. e20422, 2011.
66. Steven Luck," An Introduction to the Event-Related Potential Technique (Cognitive Neuroscience)": A Bradford Book, 2005.
67. E. Donchin, K. M. Spencer, and R. Wijesinghe," The mental prosthesis: assessing the speed of a P300-based brain-computer interface", IEEE Transactions on Rehabilitation Engineering. vol. 8(2), p. 174-179, 2000.
68. Eric W. Sellers and Emanuel Donchin," A P300-based brain–computer interface: Initial tests by ALS patients", Clinical Neurophysiology. vol. 117(3), p. 538-548, 2006.
69. Guo Fei, Hong Bo, Gao Xiaorong, and Gao Shangkai," A brain–computer interface using motion-onset visual evoked potential", Journal of Neural Engineering. vol. 5(4), p. 477, 2008.
70. A. Furdea, S. Halder, D. J. Krusienski, D. Bross, F. Nijboer, N. Birbaumer, and A. Kübler," An auditory oddball (P300) spelling system for brain-computer interfaces", Psychophysiology. vol. 46(3), p. 617-625, 2009.
71. Jon R. Katzenbach and Douglas K. Smith," The Wisdom of teams : creating the high-performance organization", New York: McKinsey & Company, 1994.
72. Y. Wang, Y. T. Wang, T. P. Jung, X. Gao, and S. Gao," A collaborative brain-computer interface". in 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI), p. 580-583, 2011.
73. P. Yuan, Y. Wang, W. Wu, H. Xu, X. Gao, and S. Gao," Study on an online collaborative BCI to accelerate response to visual targets". in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, p. 1736-1739, 2012.
74. Wang Y Yuan P, Gao X, Jung T P and Gao S," A Collaborative Brain-Computer Interface for Accelerating Human Decision Making", Universal Access in Human–Computer Interaction, 8809, p. 672-681, 2013.
75. David H. Brainard," The Psychophysics Toolbox", Spatial Vision. vol. 10(4), p. 433-436, 1997.
76. Nordic Semiconductor," nRF24L01+ Single Chip 2.4 GHz Transceiver", 2006.
77. Ali Pourahmad and Amin Mahnam," Evaluation of a Low-cost and Low-noise Active Dry Electrode for Long-term Biopotential Recording", Journal of Medical Signals and Sensors. vol. 6(4), p. 197-202, 2016.
78. A. Searle and L. Kirkup," A direct comparison of wet, dry and insulating bioelectric recording electrodes", Physiological Measurement. vol. 21(2), p. 271, 2000.
79. Yu Mike Chi, Yu-Te Wang, Yijun Wang, Christoph Maier, Tzyy-Ping Jung, and Gert Cauwenberghs," Dry and noncontact EEG sensors for mobile brain–computer interfaces", IEEE Transactions on Neural Systems and Rehabilitation Engineering. vol. 20(2), p. 228-235, 2012.
80. Yu M Chi, Yijun Wang, Yu-Te Wang, Tzyy-Ping Jung, Trevor Kerth, and Yuchen Cao," A practical mobile dry EEG system for human computer interfaces". in International Conference on Augmented Cognition, p. 649-655, 2013.
81. Joachim H Nagel," Biopotential amplifiers". Bronzino JD: Biomedical engineering hand book, 2nd edition, Springer-Verlag New York. 70.1-70.14, 2000.
82. B.-B. PRODUCTS, MicroPower, Single-Supply, CMOS Instrumentation Amplifier INA2321 datasheet, Texas Instruments, Editor. 2000.
83. Thomas Kugelstadt," Active filter design techniques", Op amps for everyone: design reference, p. 271-281, 2008.
84. Ali Bulent Usakli," Improvement of eeg signal acquisition: An electrical aspect for state of the art of front end", Computational Intelligence and Neuroscience. vol. 2010, p. 12, 2010.
85. Microchip, 8-bit AVR Microcontrollers: ATmega328/P datasheet. 2016.
86. A. Delorme and S. Makeig," EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis": ELSEVIER SCIENCE BV, 2004.
87. Robert T. Knight, Donatella Scabini, David L. Woods, and Clay C. Clayworth," Contributions of temporal-parietal junction to the human auditory P3", Brain Research. vol. 502(1), p. 109-116, 1989.
88. Sander Nieuwenhuis, Gary Aston-Jones, and Jonathan D Cohen," Decision making, the P3, and the locus coeruleus-norepinephrine system", Psychological bulletin. vol. 131, p. 510-532, 2005.
89. JOHNSON RAY," On the neural generators of the P300 component of the event‐related potential", Psychophysiology. vol. 30(1), p. 90-97, 1993.
90. Stefan Debener, Falk Minow, Reiner Emkes, Katharina Gandras, and Maarten Vos," How about taking a low‐cost, small, and wireless EEG for a walk?", Psychophysiology. vol. 49(11), p. 1617-1621, 2012.
91. Minah Kim, Tae Young Lee, Suji Lee, Sung Nyun Kim, and Jun Soo Kwon," Auditory P300 as a predictor of short-term prognosis in subjects at clinical high risk for psychosis", Schizophrenia research. vol. 165(2), p. 138-144, 2015.
92. Stefan Debener, Alexander Strobel, Bettina Sorger, Judith Peters, Cornelia Kranczioch, Andreas K. Engel, and Rainer Goebel," Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: Removal of the ballistocardiogram artefact", NeuroImage. vol. 34(2), p. 587-597, 2007.
93. L. Hu, A. Mouraux, Y. Hu, and G. D. Iannetti," A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials", NeuroImage. vol. 50(1), p. 99-111, 2010.
94. A. Miyata, H. Matsunaga, N. Kiriike, Y. Iwasaki, Y. Takei, and S. Yamagami," Event-related potentials in patients with obsessive-compulsive disorder", Psychiatry and clinical neurosciences. vol. 52(5), p. 513-518, 1998.
95. Hui Xie, Donghong Jiang, and Dandan Zhang," Individuals with depressive tendencies experience difficulty in forgetting negative material: two mechanisms revealed by ERP data in the directed forgetting paradigm", Scientific Reports. vol. 8(1), p. 1113, 2018.
96. Timm Rosburg, Nash N Boutros, and Judith M Ford," Reduced auditory evoked potential component N100 in schizophrenia—a critical review", Psychiatry research. vol. 161(3), p. 259-274, 2008.
97. Judith M. Ford, Brian J. Roach, Vanessa A. Palzes, and Daniel H. Mathalon," Using concurrent EEG and fMRI to probe the state of the brain in schizophrenia", NeuroImage: Clinical. vol. 12, p. 429-441, 2016.
98. Näätänen Risto and Picton Terence," The N1 Wave of the Human Electric and Magnetic Response to Sound: A Review and an Analysis of the Component Structure", Psychophysiology. vol. 24(4), p. 375-425, 1987.
99. Marlene Behrmann, Joy J. Geng, and Sarah Shomstein," Parietal cortex and attention", Current Opinion in Neurobiology. vol. 14(2), p. 212-217, 2004.
100. Maurizio Corbetta and Gordon L. Shulman," Control of goal-directed and stimulus-driven attention in the brain", Nature Reviews Neuroscience. vol. 3, p. 201, 2002.
101. John Polich," Updating P300: An integrative theory of P3a and P3b", Clinical Neurophysiology. vol. 118(10), p. 2128-2148, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code