Responsive image
博碩士論文 etd-0625118-234027 詳細資訊
Title page for etd-0625118-234027
論文名稱
Title
(1)設計新型環鉑高分子奈米顆粒作為光催化劑並應用於可見光驅動析氫(2)修飾聚乙二醇官能基於高分子奈米顆粒以減少非專一性生物分子吸附
(1)Newly Designed Cycloplatinated Polymer Dots as Photocatalysts for Visible Light–driven Hydrogen Evolution(2)Modification Polymer Dots with PEG Moieties to Reduce Non-specific Biomolecular Adsorption
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-25
繳交日期
Date of Submission
2018-07-26
關鍵字
Keywords
氫氣生成、可見光、光催化、奈米顆粒、半導體高分子、生物顯影、螢光共振能量轉移、聚乙二醇化、低生物毒性
Photocatalysts, Hydrogen evolution, Visible light, PEGylation, Non-specific effect, Polymer dots, Bioimaging, FRET, Semiconducting polymers
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
(一) 設計新型環鉑高分子奈米顆粒作為光催化劑並應用於可見光驅動析氫
現今我國產能的方式主要有燃煤、天然氣、核能、石油等,然而這些能源燃燒過後產生大量的二氧化碳加速了地球的暖化對環境造成極大的影響,新興且乾淨的能源開發迫在眉睫。氫氣在經由燃燒後主要產物為水跟熱,並不會產生危害環境之溫室氣體。其優異性在第一次能源危機之後,氫氣被視為能夠取代石油成為支撐全球經濟的主要能源。目前產氫的技術主要分為蒸氣重組法、水電解法、生質能產氫以及太陽能源法,其中太陽能源法雖然價格昂貴但最有效率,加上觸媒材料發展的重大突破使光化學產氫成為近年熱門研究方向。而有機半導體例如共軛高分子,相較於無機半導體具有可以調控能階的特性使達到更好的吸收可見光的效果,在近年來逐漸被科學家所重視。
透過模仿自然光合作用,藉由可見光的照射來驅動分解水並產生氫氣並將豐富的太陽能轉換成高能量密度的可用燃料是一種環保且理想的方法。在本研究中,設計以鉑錯合物單體作為共聚單體並藉由Suzuki-Miyaura交叉偶聯聚合與共軛高分子骨架共價鍵結合形成環鉑化高分子點 (Pdots)。引入Pdots於水中具有良好的分散性優點作為光催化劑,以提高與水的接觸面積。利用共價鍵結Pt錯合物能有效提高助催化劑附著以及降低系統毒性。根據我們的設計策略,在其他相同的條件下環鉑化Pdots的氫產出速率可以比原始Pdots提高9倍。此外,在最適化Pdots條件後光催化反應時間以及穩定性皆有明顯提升。基於卓越的性能,我們的環金屬Pdots系統是一種新型有潛力的可見光驅動光催化劑。

關鍵詞: 半導體高分子、奈米顆粒、光催化、可見光、氫氣生成。


(二) 修飾聚乙二醇官能基於高分子奈米顆粒以減少非專一性生物分子吸附
近年來螢光顯影技術越來越發達,因具有極佳的空間解析度與時間解析度 (spatial and time resolution),無論是應用於臨床上或是研究領域皆是非常有利的工具。螢光顯影技術當中,共軛半導體高分子 (簡稱Pdots) 因具有極佳的光穩定性以利於長時間顯影、高量子效率 (quantum yield)、低細胞毒性、所形成之奈米粒子大小適當 (小於30 nm) 而且可以對其表面進行修飾以達到不同功能,使Pdots作為螢光探針用於生物顯影相當具有潛力。然而Pdots為高分子聚集而成之奈米小球,在未經修飾進入生物體內將面臨一些挑戰如網狀內皮系統 (RES) 的快速攝取降低Pdots於體內循環時間、與非目標區域的非特異性結合、Pdots間聚集導致微血管阻塞。目前已有研究顯示添加聚乙二醇 (PEG) 能降低RES吸收並延長循環時間。奈米粒子表面修飾PEG官能基能鈍化材料表面減少與非靶向血清和組織蛋白的結合,使在肝臟中積累PEG化的奈米顆粒僅有非PEG化奈米顆粒量的三分之一,而PEG化的奈米顆粒與背景相比也表現出更佳的腫瘤積累。
現今製作Pdots過程為額外添加PS-PEG-COOH以修飾奈米粒子表面,然而利用彼此疏水性作用連結可能於生物體內受到外在力而脫離。本實驗目的期望藉由共價鍵結修飾PEG於高分子鏈減少PS-PEG-COOH脫離之可能性,並結合PEG化以減少Pdots非專一性吸附問題之特點來達到更有效的生物顯影。

關鍵詞: 聚乙二醇、奈米顆粒、低生物毒性、生物顯影、螢光共振能量轉移。
Abstract
(1) Newly Designed Cycloplatinated Polymer Dots as Photocatalysts for Visible Light–driven Hydrogen Evolution
Overuse of fossil fuels is intensifying air pollution and greenhouse effect. Thus, developing a clean, renewable energy is a matter of utmost urgency. Hydrogen has been identified as a potential energy carrier because of its high energy capacity and environmental friendliness. However, hydrogen does not exist naturally on earth; we have to make it before use it. Nowadays, there are two main pathways to produce hydrogen that is steam methane reforming and water electrolysis. Among these pathways, water electrolysis is considered as a sustainable way to produce hydrogen because its feedstock is water. However, water splitting is an uphill reaction, requiring the energy supplied from an external resource. If this energy can be obtained from a renewable energy source such as solar energy, hydrogen can then be considered as a green energy totally.
In this research, we provide a series of cycloplatinated polymer dots as photocatalyst, in which the platinum complex unit is used as a co-monomer and then linked to a conjugated polymer through Suzuki coupling polymerization. After optimizing the ratio of the Pt complexes, the hydrogen evolution rate (HER) of the cycloplatinated Pdots can be enhanced 9-times higher than the pristine Pdots under the same conditions. Furthermore, the enhancement of the reaction time and the stability are observed by introducing the cycloplatinated Pdots as photocatalysts. Based on the outstanding performance, our newly designed Pdots systems are promised to be a new type of photocatalysts for visible light–driven hydrogen evolution.
Keywords: Semiconducting polymers, Polymer dots, Photocatalysts, Visible light, Hydrogen evolution
(2) Modification Polymer Dots with PEG Moieties to Reduce Non-specific Biomolecular Adsorption
Lately, semiconducting polymer nanoparticles with small sizes (< 30 nm) have been new highly fluorescent probes in optical imaging techniques because of their outstanding fluorescence brightness, good photostability, and minimal toxicity to biosystems. Due to hydrophobic polymer composition, some challenges limit Pdots development to the clinic like uptake by the reticuloendothelial system (RES), nonspecific binding, and entrapment in the live. The research shows that the addition of poly-ethylene glycol (PEG) into nanoparticles reduces RES uptake and increases circulation time in vivo versus uncoated one.
Pdots formation is driven by hydrophobic interactions, means polymers in the Pdots are physically associated with each other. In many cases, the functional molecules may fall off from the nanoparticles due to the weak non-covalent interactions. In this research, a molecular with PEG moieties was first synthesized and then covalently linked to a conjugated polymer through Suzuki coupling. Based on this covalent linking strategy, we hope the PEGylated pdots could load more PEGylated molecular and diminish non-specific effect in biological environment.
Keywords: PEGylation、Polymer dots、Non-specific effect、Bioimaging、FRET。
目次 Table of Contents
論文審定書 i
謝誌 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
化學結構縮寫表 xiii
第一章、設計新型環鉑高分子奈米顆粒作為光催化劑並應用於可見光驅動析氫
一、 前言 1
二、 實驗 10
2-1. 實驗藥品 10
2-2. 實驗儀器 11
2-3. 合成部分 15
2-4. Pdots的製備方法 24
2-5. Pdots水溶液中聚合物的含量 25
2-6. 偵測氫氣方法與裝置 27
2-7. 細胞毒性實驗之樣品配置與儀器操作 28
三、 結果與討論 30
3-1. 設計與反應探討 30
3-2. 高分子與Pdots之物理性質 33
3-3. 光學性質探討 37
3-4. 光催化產氫條件探討 39
3-5. 環鉑高分子奈米顆粒應用於可見光驅動產氫 41
3-6. 環鉑高分子奈米顆粒性質比較與探討 46
四、 結論 50
五、 參考資料 51
第二章、修飾聚乙醇官能基於高分子奈米顆粒以減少非專一性生物分子吸附
一、 前言 56
二、 實驗 60
2-1. 實驗藥品 60
2-2. 實驗器材 62
2-3. 合成部分 64
2-4. Pdots的製備方法 74
2-5. Bioconjugation 74
2-6. 流式細胞儀樣品製備及操作 76
三、 結果與討論 78
3-1. 設計與反應探討 78
3-2. Pdots粒徑大小與水合半徑 78
3-3. 光學性質探討 79
3-4. 細胞實驗-非專一性生物鍵結探討 81
四、 結論 84
五、 參考資料 84
附圖 86
第一部分 86
1H NMR of 2,2'-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(1,3,2-dioxaborinane) 86
1H NMR of 1,4-Dimethylpiperazine-2,3-dione 87
1H NMR of 1-Bromo-3-(hexyloxy)benzene 88
1H NMR of 1,2-Bis(3-(hexyloxy)phenyl)ethane-1,2-dione 89
1H NMR of Tributyl(thiophen-2-yl)stannane 90
1H NMR of (2,3-difluoro-1,4-phenylene)bis(trimethylsilane) 91
1H NMR of 1,4-dibromo-2,3-difluorobenzene 92
1H NMR of 1,4-dibromo-2,3-difluoro-5,6-dinitrobenzene 93
1H NMR of 5,8-Dibromo-6,7-difluoro-2,3-bis(3-(hexyloxy)phenyl)quinoxaline 94
1H NMR of 6,7-Difluoro-2,3-bis(3-(hexyloxy)phenyl)-5,8-di(thiophen-2-yl)quinoxaline 95
1H NMR of 5,8-Bis(5-bromothiophen-2-yl)-6,7-difluoro-2,3-bis(3-(hexyloxy) phenyl)quinoxaline 96
1H NMR of (platinum(II)(5-bromo-2-(5-bromothiophen-2-yl)pyridinato-N,C3’) (2,4-pentane-dionato-O,O)) 97
1H NMR of(platinum(II)(4-bromo-1-(5-bromothiophen-2-yl)isoquinolinato- N,C3’)(2,4-pentanedionato-O,O)) 98
第二部分 99
1H NMR of 2,7-dibromo-9H-fluorene 99
1H NMR of 2-(2-(2-methoxyethoxy)ethoxy)ethyl methanesulfonate 100
1H NMR of 1-bromo-2-(2-(2-methoxyethoxy)ethoxy)ethane 101
1H NMR of 2,7-dibromo-9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9H-fluorene 102
1H NMR of 2,2'-(9,9-bis(2-(2-(2-methoxyethoxy)ethoxy)ethyl)-9H-fluorene- 2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 103
1H NMR of tert-butyl-3-bromopropanoate 104
1H NMR of di-tert-butyl 3,3'-(2,7-dibromo-9H-fluorene-9,9-diyl)dipropanoate 105
1H NMR of Benzo[c][1,2,5]thiadiazole 106
1H NMR of 4,7-Dibromobenzo[c][1,2,5]thiadiazole 107
1H NMR of 5,8-Dibromo-2,3-bis(3-(hexyloxy)phenyl)-2,3-dihydroquinoxaline 108
1H NMR of 2,3-bis(3-(hexyloxy)phenyl)-5,8-di(thiophen-2-yl)-2,3-dihydroquinoxaline 109
1H NMR of 5,8-Bis(5-bromothiophen-2-yl)-2,3-bis(3-(hexyloxy)phenyl)-2,3- dihydroquinoxaline 110
參考文獻 References
(第一部分)
1. Dunn, S. Int. J. Hydrogen Energy 2002, 27, 235.
2. Zuo, Z. C.; Fu, Y. Z.; Manthiram, A. Polymers 2012, 4, 1627.
3. Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148.
4. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110, 6503.
5. NREL, Reference Solar Spectral Irradiance:Air Mass 1.5 http://rredc.nrel.gov/solar/spectra/am1.5/
6. Iqbal, M. An Introduction to Solar Radiation; Academic Press: New York, 1983.
7. Linsebigler, A. L.; Lu, G. Q.; Yates J. T. Chem. Rev. 1995, 95, 735.
8. Fujishima, A.; Honda, K. Nature 1972, 238, 37.
9. Mao, S. S.; Chen, X. Int. J. Energy Res. 2007, 31, 619.
10. Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
11. Kudo, A.; Kato, H.; Nakagawa, S. J. Phys. Chem. B 2000, 104, 571.
12. Kim, H. G.; Hwang, D. W.; Bae, S. W.; Jung, J. H.; Lee, J. S. Catal. Lett. 2003, 91, 193.
13. Maeda, K.; Saito, N.; Lu, D.; Inoue, Y.; Domen, K. J. Phys. Chem. C 2007, 111, 4749.
14. Borgarello, E.; Kiwi, J.; Gra¨tzel, M.; Pelizzetti, E.; Visca, M. J. Am. Chem. Soc. 1982, 104, 2996.
15. Hwang, D. W.; Kim, H. G.; Lee, J. S.; Li, W.; Oh, S. H. J. Phys. Chem. B 2005, 109, 2093.
16. Hwang, D. W.; Kim, H. G.; Jang, J. S.; Bae, S. W.; Ji, S. M.; Lee, J. S. Catal. Today 2004, 93-95, 845.
17. Zhang, H.; Chen, G.; Li, X. Solid State Ionics 2009, 180, 1599.
18. Yang, M.; Huang, X.; Yan, S.; Li, Z.; Yu, T.; Zou, Z. Mater. Chem. Phys. 2010, 121, 506.
19. Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324.
20. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109, 5868.
21. Chen, J.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709.
22. Mahanta, D.; Madras, G.; Radhakrishnan, S.; Patil, S. J. Phys. Chem. B 2008, 112, 10153.
23. Kim, H. Y.; Bjorklund, T. G.; Lim, S.-H.; Bardeen, C. J. Langmuir 2003, 19, 3941.
24. https://scholar.google.com.tw/scholar?q=The+Conservation+of+Orbital+Symmetry.&hl=zh-TW&as_sdt=0&as_vis=1&oi=scholart
25. Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K. J. Chem. Soc., Chem. Commun. 1985, 8, 474.
26. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76.
27. Ye, S.; Wang, R.; Wu, M. Z.; Yuan, Y. P. Appl. Surf. Sci. 2015, 358, 15.
28. Schwab, M. G.; Hamburger, M.; Feng, X.; J. Shu,; Spiess, H. W.; Wang, X.; Antonietti, M. Chem. Commun. 2010, 46, 8932.
29. Yamamoto, T.; Yoneda, Y.; Maruyama, T. J. Chem. Soc., Chem. Commun. 1992, 0, 1652.
30. Maruyama, T.; Yamamoto, T. J. Phys. Chem. B 1997, 101, 3806.
31. Kailasam, K.; Schmidt, J.; Bildirir, H.; Zhang, G.; Blechert, S.; Wang, X.; Thomas, A. Macromol. Rapid Commun. 2013, 34, 1008.
32. Kailasam, K.; Mesch, M. B.; Möhlmann, L.; Baar, M.; Blechert, S.; Schwarze, M.; Schröder, M.; Schomäcker, R.; Senker, J.; Thomas, A. Energy Technol. 2016, 4, 744.
33. Zhang, Z.; Long, J.; Yang, L.; Chen, W.; Dai, W.; Fu, X.; Wang, X. Chem. Sci. 2011, 2, 1826.
34. Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. Chem. Sci. 2014, 5, 2789.
35. Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. J. Am. Chem. Soc. 2015, 137, 3265.
36. Yang, C.; Ma, B. C.; Zhang, L.; Lin, S.; Ghasimi, S.; Landfester, K.; Zhang, K. A. I.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 9202.
37. Li, R.; Byun, J.; Huang, W.; Ayed, C.; Wang, L.; Zhang, K. A. I. ACS Catal. 2018, 8, 4735.
38. Li, L.; Lo, W.-y.; Cai, Z.; Zhang, N.; Yu, L. Macromolecules 2016, 49, 6903.
39. Wang, L.; Fernández-Terán, R.; Zhang, L.; Fernandes, D. L. A.; Tian, L.; Chen, H.; Tian H. Angew. Chem. Int. Ed. 2016, 55, 12306.
40. Szymanski, C.; Wu, C.; Hooper, J.; Salazar, M. A.; Perdomo, A.; Dukes, A.; McNeill, J. D. J. Phys. Chem. B 2005, 109, 8543.
41. Wu, C.; Bull, B.; Christensen, K.; McNeill, J. Angew. Chem. Int. Ed. 2009, 48, 2741.
42. Wu, C.; Jin, Y.; Schneider, T.; Burnham, D. R.; Smith, P. B.; Chiu, D. T. Angew. Chem. Int. Ed. 2010, 49, 9436.
43. Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Angew. Chem. Int. Ed. 2011, 50, 3430.
44. Xiong, L.; Shuhendler, A. J.; Rao, J. Nature communications, 2012, 3, 1193.
45. Chen, D.; Wu, I. C.; Liu, Z.; Tang, Y.; Chen, H.; Yu, J.; Chiu, D. T. Chem. Sci. 2017, 8, 3390.
46. Pati, P. B.; Damas, G.; Tian, L.; Fernandes, D. L. A.; Zhang, L.; Pehlivan, I. B.; Edvinsson, T.; Araujo, C. M.; Tian H. Energy Environ. Sci. 2017, 10, 1372.
47. Yang, J.; Wang, D.; Han, H.; Li, C. Acc. Chem. Res. 2013, 46, 1900.
48. Li, L.; Hadt, R. G.; Yao, S.; Lo, W.-Y.; Cai, Z.; Wu, Q.; Pandit, B.; Chen, L. X.; Yu, L. Chem. Mater. 2016, 28, 5394.
49. Martha, S.; Nashim, A.; Parida, K. M. J. Mater. Chem. A 2013, 1, 7816.
50. Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X.; Antonietti, M.; Wang, X. Angew. Chem. Int. Ed. 2010, 49, 441.
51. Li, L.; Cai, Z.; Wu, Q.; Lo, W. Y.; Zhang, N.; Chen, L. X.; Yu, L. J. Am. Chem. Soc. 2016, 138, 7681.
52. Liao, C. Y.; Chen, C. P.; Chang, C. C.; Hwang, G. W.; Chou, H. H.; Cheng, C. H. Sol. Energ. Mater. & Sol. C. 2013, 109, 111.
53. Chan, Y.-H.; Wu, P.-J. Part. Part. Syst. Charact. 2015, 32, 11.
54. Trasatti, S. Pure Appl. Chem. 1986, 58, 955.
55. Ahmad, H.; Kamarudin, S. K.; Minggu, L. J.; Kassim, M. Renewable Sustainable Energy Rev. 2015, 43, 599.
56. Chow, Y. L.; Danen, W. C.; Nelsen, S. F.; Rosenblatt, D. H. Chem. Rev. 1978, 78, 243.
57. Pellegrin, Y.; Odobel, F. C. R. Chim. 2017, 20, 283.
58. Wang, M. J.; Shen, S. L.; Li, L.; Tang, Z. H.; Yang, J. H. J. Mater. Sci. 2017, 52, 5155.
59. Lu, L.; Zheng, T.; Wu, Q.; Schneider, A. M.; Zhao, D.; Yu, L. Chem. Rev. 2015, 115, 12666.
60. Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. J. Am. Chem. Soc., 2015, 137, 10420.
61. Pu, K.; Liu, B. Adv. Funct. Mater. 2011, 21, 3408.
62. Li, K.; Liu, B. J. Mater. Chem. 2012, 22, 1257.
63. Yu, J.; Wu, C.; Zhang, X.; Ye, F.; Gallina, M. E.; Rong, Y.; Wu, I. C.; Sun, W.; Chan, Y.-H.; Chiu, D. T. Adv. Mater. 2012, 24, 3498.
64. Costa, J. C. S.; Taveira, R. J. S.; Lima, C. F. R. A. C.; Mendes, A.; Santos, L. M. N. B. F. 2016, 58, 51.
65. Iwase, A.; Kato, H.; Kudo, A. Appl. Catal. B 2013, 136–137, 89.
66. Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. J. Catal. 2009, 266, 165.
67. Schwarz, C.; Bassler, H.; Bauer, I.; Koenen, J. M.; Preis, E.; Scherf, U.; Köçhler, A. Adv. Mater. 2012, 24, 922.
68. Zhang, W.; Smith, J.; Hamilton, R.; Heeney, M.; Kirkpatrick, J.; Song, K.; Watkins, S. E.; Anthopoulos, T.; McCulloch, I. J. Am. Chem. Soc. 2009, 131, 10814.
69. Sprick, R. S.; Hoyos, M.; Wrackmeyer, M. S.; Parry, A. V. S.; Grace, I. M.; Lambert, C.; Navarro, O.; Turner, M. L. J. Mater. Chem. C 2014, 2, 6520.
70. Woods, D. J.; Sprick, R. S.; Smith, C. L.; Cowan, A. J.; Cooper, A. I. Adv. Energy Mater. 2017, 7, 1700479.
71. Miller, W. L.; Moran, M. A.; Sheldon, W. M.; Zepp, R. G.; Opsahl, S. Limnol. Oceanogr. 2002, 47, 343.
72. Liu, D.; Wang, J.; Bai, X.; Zong, R.; Zhu, Y. Adv. Mater. 2016, 28, 7284.

(第二部分)
1. Wu, C.; Chiu, D. T. Angew. Chem. Int. Ed. 2013, 52, 3086.
2. Fernandez-Suarez, M.; Ting, A. Y. Nat. Rev. Mol. Cell Biol. 2008, 9, 929.
3. Szymanski, C.; Wu, C.; Hooper, J.; Salazar, M. A.; Perdomo, A.; Dukes, A.; McNeill, J. D. J. Phys. Chem. B 2005, 109, 8543.
4. Wu, C.; Bull, B.; Szymanski, C.; Christensen, K.; McNeill, J. ACS Nano 2008, 2, 2415.
5. Wu, C.; Bull, B.; Christensen, K.; McNeill, J. Angew. Chem. Int. Ed. 2009, 48, 2741.
6. Wu, C.; Jin, Y.; Schneider, T.; Burnham, D. R.; Smith, P. B.; Chiu, D. T. Angew. Chem. Int. Ed. 2010, 49, 9436.
7. Xiong, L.; Shuhendler, A. J.; Rao, J. Nat. Commun. 2012, 3, 1193.
8. Kuo, S. Y.; Li, H. H.; Wu, P. J.; Chen, C. P.; Huang, Y. C.; Chan, Y. H. Anal. Chem. 2015, 87, 4765.
9. Kuo, C.-T.; Thompson, A. M.; Gallina, M. E.; Ye, F.; Johnson, E. S.; Sun, W.; Zhao, M.; Yu, J.; Wu, I.-C.; Fujimoto, B.; Chiu, D. T. Nat. Commun. 2016, 7, 11468.
10. Sun, K.; Tang, Y.; Li, Q.; Yin, S.; Qin, W.; Yu, J.; Chiu, D. T.; Liu, Y.; Yuan, Z.; Zhang, X.; Wu, C. ACS Nano 2016, 10, 6769
11. Chen, D.; Wu, I. C.; Liu, Z.; Tang, Y.; Chen, H.; Yu, J.; Chiu, D. T. Chem. Sci. 2017, 8, 3390.
12. Chen, X.; Li, R.; Liu, Z.; Sun, K.; Sun, Z.; Chen, D.; Xu, G.; Xi, P.; Wu, C.; Sun, Y. Adv. Mater. 2017, 29, 1604850
13. Jokerst, J. V.; Lobovkina, T.; Zare, R. N.; Gambhir, S. S. Nanomedicine 2011, 6, 715.
14. van Vlerken, L. E.; Vyas, T. K.; Amiji, M. M. Pharm. Res. 2007, 24, 1405.
15. Kanaras, A. G.; Kamounah, F. S.; Schaumburg, K.; Kiely, C. J.; Brust, M. Chem. Commun. 2002, 2294.
16. Kwon, G. S. Crit. ReV. Ther. Drug Carrier Syst. 2003, 20, 357.
17. Wu, C.; Schneider, T.; Zeigler, M.; Yu, J.; Schiro, P. G.; Burnham, D. R.; McNeill, J. D.; Chiu, D. T. J. Am. Chem. Soc. 2010, 132, 15410.
18. Yu, J.; Wu, C.; Zhang, X.; Ye, F.; Gallina, M. E.; Rong, Y.; Wu, I. C.; Sun, W.; Chan, Y.-H.; Chiu, D. T. Adv. Mater. 2012, 24, 3498.
19. Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. J. Am. Chem. Soc., 2015, 137, 10420.
20. Sahoo, H. J. Photochem. Photobiol. CPhotochem. Rev. 2011, 12, 20.
21. http://blogs.flinders.edu.au/nano-news/2014/07/25/fluorescent-ph-sensor-based-on-aggregation-induced-emission-aie-effect-and-superabsorbent-polymers-saps/
22. Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code