Responsive image
博碩士論文 etd-0625120-130149 詳細資訊
Title page for etd-0625120-130149
論文名稱
Title
含聯吡啶多硫共聚物之合成與應用
Synthesis and Application of Bipyridine Containing Polysulfide Material
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2020-07-02
繳交日期
Date of Submission
2020-07-25
關鍵字
Keywords
金屬吸附、金屬抓取、多硫共聚物、反硫化反應、綠色化學
green chemistry, metal adsorption, metal capture, polysulfide, inverse vulcanization
統計
Statistics
本論文已被瀏覽 63 次,被下載 0
The thesis/dissertation has been browsed 63 times, has been downloaded 0 times.
中文摘要
在資源逐漸匱乏的現代,綠色化學已逐漸成為未來發展的趨勢,而工業發展所造成重金屬汙染的問題也不勝枚舉,對於環境與人類有極大的傷害。硫常為石化工業的副產品,其產量供過於求且價格低,促使反硫化反應的相關研究發展,此類反應主要使用高比例的硫與含烯烴的有機交聯劑,可以穩定加熱聚合後硫的長鏈,而且不需要使用溶劑,原子經濟性高,多篇文獻發表此類多硫共聚物對於汞有優異的抓取效果,能夠淨化被汞汙染的土壤或水,但並沒有深入研究移除其他重金屬的多硫共聚物。
本研究合成含有聯吡啶的多硫共聚物,比較碳鏈長度不同的聯吡啶交聯劑對於聚合產物性質之影響,其合成分別透過烯丙醇或油醇與聯吡啶進行縮合反應,由於碳鏈較長的交聯劑使分子在聚合中的空間較不擁擠而能反應得更完全,故油醇聯吡啶多硫共聚物之原子使用效率較佳,且在反應溫度185 ℃時較低溫時反應效率來得高;而在金屬抓取方面,藉由探討多硫共聚物聯吡啶與硫的含量與金屬溶液的濃度,利用紫外-可見光分光光譜儀測定抓金屬反應完之溶液吸收度,再計算其對重金屬的抓取率進行初步條件的優化,最後使用含40 wt% 硫之油醇聯吡啶多硫共聚物進行在低濃度的混和金屬溶液下對於抓取重金屬的測試,其結果顯示出本論文所合成的多硫共聚物整體抓取效率比文獻發表過的植物油多硫共聚物高,能在3.5 ppm的混和金屬溶液移除近100% 之銅、銀、汞、鉍,且對於鉻、鐵、鎳、鎵、銦等金屬也有顯著的抓取效果,此研究對於移除工業廢水中多種有毒金屬實有貢獻。
Abstract
As resources are becoming scarce, green chemistry has become the trend of the future. Industrialization has generated a lot of pollution from the use of heavy metal. This problem is so serious that it harms the environment and human. Sulfur is a common by-product from petroleum industry. Its mass production has promoted the research in inverse vulcanization to synthesize useful polymers with high-sulfur-content. Inverse vulcanization involves the reaction with high percentage of elemental sulfur with a alkene crosslinker that can stabilize the long polymerizing sulfide chain. Moreover, the reaction is usually performed without solvent as well as being high yielding, which increase its value in green chemistry. There has been a lot of research showing that this kind of polysulfides are good at removing mercury so as to purify polluted land or water. Sadly, there have not been good materials so far to capture different metals or multiple metals all at once.
This research synthesized bipyridine-containing polysulfides and examine the ability of these materials to capture multiple metals. Different length of carbon chain on the crosslinker was shown to affect the rate of reaction. The longer carbon chain of oleyl bipyridine crosslinker was found to be showed the better efficiency of reaction. Besides, the reaction at 185 ℃ superior to that at lower temperature.
In the part of capturing metals, we varied the sulfur composition of polysulfide as well as the concentration of metal solution. For the initial optimization, UV-Visible spectrophotometer was used to determine the amount of remaining metals after the polysulfide material was incubated with metal solution. Next, the 40 wt% sulfur polysulfide was tested for multiple metal capture at low concentrations This experiment showed the almost 100% removal of Cu, Ag, Hg, and Bi. In addition to this, the material also good at capturing Cr, Fe, Ni, Ga, and In. In conclusion, this research contributes towards reducing toxic metal pollution from industrial wastewater.
目次 Table of Contents
論文審定書 i
謝誌 ii
中文摘要 iv
Abstract v
目次 vii
圖目錄 ix
流程目錄 xiii
表目錄 xiv
光譜目錄 xv
縮寫表 xvi
第一章 緒論 1
1.1. 研究背景 1
1.1.1. 綠色化學 1
1.1.2. 重金屬汙染 3
1.1.3. 硫的性質 6
1.1.4. 反硫化反應 (inverse vulcanization) 7
1.2. 多硫共聚物的應用 9
1.2.1. 鋰硫電池 (Li-S batteries) 9
1.2.2. 紅外透明鏡片 (IR transparent lenses) 10
1.2.3. 可控制釋放的肥料 (controlled-release fertilisers) 12
1.2.4. 抗菌材料 (antimicrobial materials) 14
1.2.5. 水質淨化 (water purification) 16
1.3. 研究動機 21
第二章 結果與討論 22
2.1. 植物油多硫共聚物 22
2.1.1. 植物油多硫共聚物之合成 22
2.2. 含聯吡啶之交聯劑的合成 23
2.2.1. Diallyl [2,2'-bipyridine]-4,4'-dicarboxylate(3)之合成 23
2.2.2. Dioleyl [2,2'-bipyridine]-4,4'-dicarboxylate(4)之合成 24
2.3. 利用烯丙醇聯吡啶交聯劑合成多硫共聚物(5) 26
2.4. 利用烯丙醇聯吡啶交聯劑與植物油合成多硫共聚物(6) 28
2.4.1. 改變溫度、固定硫比例對聚合物反應時間與性質的影響 28
2.4.2. 改變硫比例、固定185 ℃對聚合物反應時間與性質的影響 33
2.5. 利用油醇聯吡啶交聯劑合成多硫共聚物(7) 34
2.5.1. 改變溫度、固定硫比例對聚合物反應時間與性質的影響 35
2.5.2. 改變硫比例、固定185 ℃對聚合物反應時間與性質的影響 39
2.6. 多硫共聚物(7)對於鎳金屬的抓取效果 44
2.6.1. 比較不同硫比例之poly(S-r-DOBP) 對鎳金屬的抓取效果 45
2.6.2. 比較poly(S50-r-DOBP50) 對不同濃度鎳金屬溶液的抓取效果 46
2.6.3. 比較poly(S40-r-DOBP60) 與 poly(S50-r-DOBP50) 對固定濃度鎳金屬溶液的抓取效果 48
2.7. 油醇聯吡啶多硫共聚物(7)之性質測量 49
2.7.1. poly(S40-r-DOBP60) 之溶解度 49
2.7.2. 掃描電子顯微鏡(Scanning Electron Microscope, SEM) 50
2.7.3. 能量色散X射線光譜儀(Energy Dispersive X-ray Spectrometer, EDS) 52
2.7.4. 微差掃描熱量法(Differential Scanning Calorimetry, DSC) 54
2.7.5. 熱重分析(Thermogravimetric Analysis, TGA) 56
2.7.6. X射線繞射儀(X-ray Diffractometer, XRD) 57
2.7.7. 凝膠滲透層析(Gel Permeation Chromatography, GPC) 59
2.7.8. 元素分析(Elemental Analysis, EA) 60
2.8. 多硫共聚物於多種金屬溶液中的金屬抓取效果 61
2.8.1. ICP-MS之檢測結果 61
2.8.2. poly(S40-r-DOBP60) 抓取不同金屬之EDS分析 64
2.9. 利用碳酸氫鈉作為多硫共聚物之發泡劑 67
2.10. 結論及未來展望 68
第三章 參考資料 69
第四章 實驗步驟與光譜數據 75
4.1. 儀器設備與藥品材料 75
4.2. 合成步驟與數據 79
4.2.1. 烯丙醇聯吡啶交聯劑的合成基本步驟 79
4.2.2. 油醇聯吡啶交聯劑的合成基本步驟 81
4.2.3. 烯丙醇多硫共聚物的合成基本步驟 84
4.2.4. 油醇多硫共聚物的合成基本步驟 85
4.2.5. 利用碳酸氫鈉作為油醇多硫共聚物發泡劑的合成基本步驟 87
4.3. 檢測步驟與數據 88
4.3.1. 利用紫外-可見光分光光譜儀檢測金屬抓取效果之實驗基本步驟 88
4.3.2. 送測感應耦合電漿質譜分析儀(ICP-MS) 金屬抓取效果之實驗基本步驟 89
第五章 光譜資料 90
參考文獻 References
1. Anastas, P.; Eghbali, N., Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2010, 39, 301-312.
2. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, 1998
3. Tang, S. Y.; Bourne, R. A.; Smith, R. L.; Poliakoff, M., The 24 Principles of Green Engineering and Green Chemistry: “IMPROVEMENTS PRODUCTIVELY”. Green Chem. 2008, 10, 268-269.
4. Bjørklund, G.; Dadar, M.; Mutter, J.; Aaseth, J., The toxicology of mercury: Current research and emerging trends. Environ. Res. 2017, 159, 545-554.
5. Ihsanullah; Abbas, A.; Al-Amer, A. M.; Laoui, T.; Al-Marri, M. J.; Nasser, M. S.; Khraisheh, M.; Atieh, M. A., Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications. Sep. Purif. Technol. 2016, 157, 141-161.
6. Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.; Kaprara, E.; Mitrakas, M.; Frei, R.; Vargemezis, G.; Vogiatzis, D.; Zouboulis, A.; Filippidis, A., Environmentally available hexavalent chromium in soils and sediments impacted by dispersed fly ash in Sarigkiol basin (Northern Greece). Environ. Pollut. 2018, 235, 632-641.
7. Zambelli, B.; Uversky, V. N.; Ciurli, S., Nickel impact on human health: An intrinsic disorder perspective. Biochim. Biophys. Acta, Proteins Proteomics 2016, 1864, 1714-1731.
8. Lundquist, N. A.; Worthington, M. J. H.; Adamson, N.; Gibson, C. T.; Johnston, M. R.; Ellis, A. V.; Chalker, J. M., Polysulfides made from re-purposed waste are sustainable materials for removing iron from water. RSC Adv. 2018, 8, 1232-1236.
9. Chitambar, C. R., Medical applications and toxicities of gallium compounds. Int. J. Environ. Res. Public Health 2010, 7, 2337-2361.
10. Ivanoff, C. S.; Ivanoff, A. E.; Hottel, T. L., Gallium poisoning: A rare case report. Food Chem. Toxicol. 2012, 50, 212-215.
11. Lim, C. H.; Han, J.-H.; Cho, H.-W.; Kang, M., Studies on the toxicity and distribution of indium compounds according to particle size in sprague-dawley rats. Toxicol. Res. 2014, 30, 55-63.
12. Neoh, C. H.; Noor, Z. Z.; Mutamim, N. S. A.; Lim, C. K., Green technology in wastewater treatment technologies: Integration of membrane bioreactor with various wastewater treatment systems. Chem. Eng. J. 2016, 283, 582-594.
13. Alalwan, H. A.; Kadhom, M. A.; Alminshid, A. H., Removal of heavy metals from wastewater using agricultural byproducts. J. Water Supply Res. Technol. - Aqua 2020, 69, 99-112.
14. Karnib, M.; Kabbani, A.; Holail, H.; Olama, Z., Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite. Energy Procedia 2014, 50, 113-120.
15. Ani, J. U.; Akpomie, K. G.; Okoro, U. C.; Aneke, L. E.; Onukwuli, O. D.; Ujam, O. T., Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Appl. Water Sci. 2020, 10, 69.
16. Liu, C.-C.; Kuang-Wang, M.; Li, Y.-S., Removal of Nickel from Aqueous Solution Using Wine Processing Waste Sludge. Ind. Eng. Chem. Res. 2005, 44, 1438-1445.
17. Bartczak, P.; Norman, M.; Klapiszewski, Ł.; Karwańska, N.; Kawalec, M.; Baczyńska, M.; Wysokowski, M.; Zdarta, J.; Ciesielczyk, F.; Jesionowski, T., Removal of nickel(II) and lead(II) ions from aqueous solution using peat as a low-cost adsorbent: A kinetic and equilibrium study. Arab. J. Chem. 2018, 11, 1209-1222.
18. Kutney, G. Sulfur: History, Technology, Applications & Industry., ChemTec: Toronto, 2013
19. Chung, W. J.; Griebel, J. J.; Kim, E. T.; Yoon, H.; Simmonds, A. G.; Ji, H. J.; Dirlam, P. T.; Glass, R. S.; Wie, J. J.; Nguyen, N. A.; Guralnick, B. W.; Park, J.; Somogyi, Á.; Theato, P.; Mackay, M. E.; Sung, Y.-E.; Char, K.; Pyun, J., The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518-524.
20. Zhang, Y.; Griebel, J. J.; Dirlam, P. T.; Nguyen, N. A.; Glass, R. S.; Mackay, M. E.; Char, K.; Pyun, J., Inverse vulcanization of elemental sulfur and styrene for polymeric cathodes in Li-S batteries. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 107-116.
21. Gomez, I.; Leonet, O.; Blazquez, J. A.; Mecerreyes, D., Inverse Vulcanization of Sulfur using Natural Dienes as Sustainable Materials for Lithium–Sulfur Batteries. ChemSusChem 2016, 9, 3419-3425.
22. Oishi, S.; Oi, K.; Kuwabara, J.; Omoda, R.; Aihara, Y.; Fukuda, T.; Takahashi, T.; Choi, J.-C.; Watanabe, M.; Kanbara, T., Synthesis and Characterization of Sulfur-Based Polymers from Elemental Sulfur and Algae Oil. ACS Appl. Polym. Mater. 2019, 1, 1195-1202.
23. Griebel, J. J.; Nguyen, N. A.; Namnabat, S.; Anderson, L. E.; Glass, R. S.; Norwood, R. A.; Mackay, M. E.; Char, K.; Pyun, J., Dynamic Covalent Polymers via Inverse Vulcanization of Elemental Sulfur for Healable Infrared Optical Materials. ACS Macro Lett. 2015, 4, 862-866.
24. Kleine, T. S.; Nguyen, N. A.; Anderson, L. E.; Namnabat, S.; LaVilla, E. A.; Showghi, S. A.; Dirlam, P. T.; Arrington, C. B.; Manchester, M. S.; Schwiegerling, J.; Glass, R. S.; Char, K.; Norwood, R. A.; Mackay, M. E.; Pyun, J., High Refractive Index Copolymers with Improved Thermomechanical Properties via the Inverse Vulcanization of Sulfur and 1,3,5-Triisopropenylbenzene. ACS Macro Lett. 2016, 5, 1152-1156.
25. Boyd, D. A.; Baker, C. C.; Myers, J. D.; Nguyen, V. Q.; Drake, G. A.; McClain, C. C.; Kung, F. H.; Bowman, S. R.; Kim, W.; Sanghera, J. S., ORMOCHALCs: organically modified chalcogenide polymers for infrared optics. Chem. Commun. 2017, 53, 259-262.
26. Mann, M.; Kruger, J. E.; Andari, F.; McErlean, J.; Gascooke, J. R.; Smith, J. A.; Worthington, M. J. H.; McKinley, C. C. C.; Campbell, J. A.; Lewis, D. A.; Hasell, T.; Perkins, M. V.; Chalker, J. M., Sulfur polymer composites as controlled-release fertilisers. Org. Biomol. Chem. 2019, 17, 1929-1936.
27. Deng, Z.; Hoefling, A.; Théato, P.; Lienkamp, K., Surface Properties and Antimicrobial Activity of Poly(sulfur-co-1,3-diisopropenylbenzene) Copolymers. Macromol. Chem. Phys. 2018, 219, 1700497.
28. Smith, J. A.; Mulhall, R.; Goodman, S.; Fleming, G.; Allison, H.; Raval, R.; Hasell, T., Investigating the Antibacterial Properties of Inverse Vulcanized Sulfur Polymers. ACS Omega 2020, 5, 5229-5234.
29. Crockett, M. P.; Evans, A. M.; Worthington, M. J. H.; Albuquerque, I. S.; Slattery, A. D.; Gibson, C. T.; Campbell, J. A.; Lewis, D. A.; Bernardes, G. J. L.; Chalker, J. M., Sulfur-Limonene Polysulfide: A Material Synthesized Entirely from Industrial By-Products and Its Use in Removing Toxic Metals from Water and Soil. Angew. Chem. Int. Ed. 2016, 55, 1714-1718.
30. Hasell, T.; Parker, D. J.; Jones, H. A.; McAllister, T.; Howdle, S. M., Porous inverse vulcanised polymers for mercury capture. Chem. Commun. 2016, 52, 5383-5386.
31. Thielke, M.; Bultema, L.; Brauer, D.; Richter, B.; Fischer, M.; Theato, P., Rapid Mercury(II) Removal by Electrospun Sulfur Copolymers. Polymers 2016, 8, 266.
32. Worthington, M. J. H.; Kucera, R. L.; Albuquerque, I. S.; Gibson, C. T.; Sibley, A.; Slattery, A. D.; Campbell, J. A.; Alboaiji, S. F. K.; Muller, K. A.; Young, J.; Adamson, N.; Gascooke, J. R.; Jampaiah, D.; Sabri, Y. M.; Bhargava, S. K.; Ippolito, S. J.; Lewis, D. A.; Quinton, J. S.; Ellis, A. V.; Johs, A.; Bernardes, G. J. L.; Chalker, J. M., Laying Waste to Mercury: Inexpensive Sorbents Made from Sulfur and Recycled Cooking Oils. ‎Chem. Eur. J 2017, 23, 16219-16230.
33. Lee, J.-Sing M.; Parker, D. J.; Cooper, A. I.; Hasell, T., High surface area sulfur-doped microporous carbons from inverse vulcanised polymers. J. Mater. Chem. A 2017, 5, 18603-18609.
34. Parker, D. J.; Jones, H. A.; Petcher, S.; Cervini, L.; Griffin, J. M.; Akhtar, R.; Hasell, T., Low cost and renewable sulfur-polymers by inverse vulcanisation, and their potential for mercury capture. J. Mater. Chem. A 2017, 5, 11682-11692.
35. Akay, S.; Kayan, B.; Kalderis, D.; Arslan, M.; Yagci, Y.; Kiskan, B., Poly(benzoxazine-co-sulfur): An efficient sorbent for mercury removal from aqueous solution. J. Appl. Polym. Sci. 2017, 134, 45306.
36. Abraham, A. M.; Kumar, S. V.; Alhassan, S. M., Porous sulphur copolymer for gas-phase mercury removal and thermal insulation. Chem. Eng. J. 2018, 332, 1-7.
37. Wu, X.; Smith, J. A.; Petcher, S.; Zhang, B.; Parker, D. J.; Griffin, J. M.; Hasell, T., Catalytic inverse vulcanization. Nat. Commun. 2019, 10, 647.
38. Worthington, M. J. H.; Kucera, R. L.; Chalker, J. M., Green chemistry and polymers made from sulfur. Green Chem. 2017, 19, 2748-2761.
39. Tikoalu, A. D.; Lundquist, N. A.; Chalker, J. M., Mercury Sorbents Made By Inverse Vulcanization of Sustainable Triglycerides: The Plant Oil Structure Influences the Rate of Mercury Removal from Water. Adv. Sustain. Syst. 2020, 4, 1900111.
40. Worthington, M. J. H.; Shearer, C. J.; Esdaile, L. J.; Campbell, J. A.; Gibson, C. T.; Legg, S. K.; Yin, Y.; Lundquist, N. A.; Gascooke, J. R.; Albuquerque, I. S.; Shapter, J. G.; Andersson, G. G.; Lewis, D. A.; Bernardes, G. J. L.; Chalker, J. M., Sustainable Polysulfides for Oil Spill Remediation: Repurposing Industrial Waste for Environmental Benefit. Adv. Sustain. Syst. 2018, 2, 1800024.
41. Barbante, G. J.; Hogan, C. F.; Wilson, D. J. D.; Lewcenko, N. A.; Pfeffer, F. M.; Barnett, N. W.; Francis, P. S., Simultaneous control of spectroscopic and electrochemical properties in functionalised electrochemiluminescent tris(2,2′-bipyridine)ruthenium(ii) complexes. Analyst 2011, 136, 1329-1338.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code