Responsive image
博碩士論文 etd-0626103-121448 詳細資訊
Title page for etd-0626103-121448
論文名稱
Title
分子束磊晶成長半導體光放大器結構
InGaAlAs/InP Semiconductor Optical Amplifier Structures Grown by Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-18
繳交日期
Date of Submission
2003-06-26
關鍵字
Keywords
分子束磊晶、半導體光放大器
Semiconductor Optical Amplifier, Molecular Beam Epitaxy
統計
Statistics
本論文已被瀏覽 5705 次,被下載 35
The thesis/dissertation has been browsed 5705 times, has been downloaded 35 times.
中文摘要
本論文旨在以本實驗室之分子束磊晶(MBE)系統,在InP基板上成長TE極化與極化不敏感之半導體光放大器磊晶片,前者適合於製作發射端之光放大器與雷射,後者適合於製作中途及接收端之光放大器。我們以晶格匹配之InAl(1)As、InGa(1)Al(2)As(1.24
Abstract
The work of this thesis includes the growth of TE polarization and polarization insensitive semiconductor optical amplifier structures by molecular beam epitaxy. The former is suited to fabricate the SOA and laser of the emitter, the latter is suited to fabricate the SOA of the repeater and receiver. The materials of InAl(1)As, InGa(1)Al(2)As and InGa(2)As were used to be the cladding layer, SCH layer and quantum well(QW), respectively.
The first kind of our SOA structures is for 1.55-μm TE polarization. The materials of InGa(1)As and InGa(2)As were used to be QW and sub-well, respectively. The second kind of our SOA structures is for 1.55-μm polarization insensitive. To get polarization insensitive characteristics we use tensile strained InGa(3)As material and add two very thin compressive strain layers, InGa(1)As, in QWs to be sub-wells to mostly confine hh1 state. It has the effect of reducing red shift on the e1-hh1 transition and help to partially balance the strain in QW before the thickness of the tensile strained InGa(3)As exceeds one half of the critical layer thickness. These two kinds of structures include three QWs with modulation doping. It can reduce transparency current and noise figure and increase the saturation output power of SOA with the n-type modulation doping.
We had successfully grown the polarization insensitive SOA structure for 1.52-μm. The wavelength of TE polarization SOA structures we grew were at 1.45(µm) and 1.47(µm) and there were somewhat differences between the designed and grown. We can increase the PL efficiency after rapid thermal annealing at 550℃ for 30(s)~45(s).
目次 Table of Contents
第一章 簡介………………………………………………………… ...1
1-1前言………………………………………………………..1
1-2半導體光放大器種類……………………………………..3
1-3半導體光放大器的應用…………………………………..5
1-4論文架構…………………………………………………..6

第二章 基板概念與原理………………………………………………7
2-1半導體光放大器基本概念……………………………….7
2-1-1光放大器增益及輸出飽和功率……………………7
2-1-2光放大器雜訊………………………………………8
2-1-3半導體光放大器元件特性…………………………9
2-2應變之基本概念…………………………………………11
2-2-1應變的產生………………………………………..11
2-2-2應變的種類及特性………………………………..12
2-3 調變摻雜………………………………………………...15

第三章 半導體光放大器結構與設計………………………………..17
3-1 材料的選擇……………………………………………...17
3-2量子井結構與設計………………………………………19
3-2-1 TE極化半導體光放大器結構……………………19
3-2-2極化不敏感半導體光放大器結構………………..25
3-2-3模擬量子井混合(QW intermixing)之結構設計….28


第四章 實驗原理與方法……………………………………………..30
4-1分子束磊晶原理…………………………………………30
4-2 X-Ray繞射原理..………………………………………..33
4-3實驗方法及步驟…………………………………………35
4-3-1材料源流量之量測………………………………..35
4-3-2材料溫度之找尋…………………………………..39
4-3-3半導體光放大器結構成長與量測………………..41

第五章 實驗結果與討論……………………………………………..42
5-1材料源流量………………………………………………42
5-2材料源溫度之尋找………………………………………46
5-3結構成長與量測結果……………………………………53

第六章 結論…………………………………………………………..72

參考文獻………………………………………………………………..74

附錄A MD3QWC之結構配置表……………………….……………..77
附錄B PI3QWC之結構配置表………………………….…………….78
附錄C MD3QWSC之結構配置表……………………….……………79
附錄D PI3QWC之結構配置表………………………….…………….80
附錄E PL光譜量測裝置圖…………………………….………………81
參考文獻 References
[1] J. E. Johnson, L. J.-P. Ketelsen, J. M. Geary, F. S. Walters, J. M. Freund, M. S. Hyberisen, K. G. Glogovsky, and C. W. Lentz, “10Gb/s transmission using an electroabsorption-modulated distributed Bragg reflector laser with integrated semiconductor optical amplifier,” Optical Fiber Communication Conference and Exhibit, 2001. OFC 2001, 2001 Pages: ThG6-T1-3 vol.4

[2] J. De Merlier, G. Morthier, P. Van Daele, I. Moerman and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA,” Electronics Letters, Vol. 38 No. 5, pp238~239, 28th February 2002.

[3] Jungkeun Lee, “Roles of Semiconductor Laser Amplifiers in WDM/TDM Fiber-Optic Communications,” Kamiya & Tsuchiya Lab. Department of Electronic Engineering The University of Tokyo, Friday, 17 January 1997

[4] M. J. O’MAHONY, “Semiconductor Laser Optical Amplifiers for Use in Future Fiber Systems,” Journal of Lightwave Technology, Vol. 6. NO. 4, pp531~544 April 1988

[5] S. Shimada and H. Ishio, “Optical Amplifiers and their Applications,” John Wiley & Sons, 1994, chapter 1 and chapter 4.

[6] Tadashi Saitoh, Takaaki Mukai, “Recent Progress in Semiconductor Laser Amplifiers,” Journal of Lightwave Technology, Vol. 6. NO. 11, pp1656~1664, November 1988.

[7] Kerry J. Vahala, C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett. 52(23), pp1945~1947, 6 June 1988.

[8] L. A. Coldren and S.W. Corzine “Diode Laser and Photonic Integrated Circuits” John Wiley & Sons, INC, 1995, chapter 4.

[9] Takaaki Mukai, Yoshihiso Yamamoto, and Tatsuya Kimura, “Optical Amplification by Semiconductor Lasers,” in “Semiconductors and Semimetals,” R. K. Willardson and A. C. Beer, editors, New York, Vol. 22, Part E, Academic 1985, chapter 3.

[10] Jae Su Yu, Jin Dong Song, Yong Tak Lee, H. Lin, “Effect of RTA on the optical properties of In0.53Ga0.47As/In0.52Al0.48As multiple quantum wells width InGaAs and dielectric capping layers,” J. Appl. Phys., Vol. 91, No. 4, pp2080~2084, 15 February 2002

[11] J. Minch, S.H, Park, T. Keating, S. L. Chuang, “Theory and experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long wavelength strained quantum well lasers,” IEEE Journal of Quantum Electronics, Vol. 35, No. 5, pp771~782, May 1999

[12] Vurgaftman, J. R. Meryer, L. R. Ram-Mohan, ”Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys,” J. Appl. Phys., Vol. 89, No. 11, pp5815~5875, 1 June 2001

[13] T. Y. Chang, N. J. Sauer, T. H. Wood, J. Z. Pastalan, C. A. Burrus, Jr., and B. C. Johnson, “Significant Improvement of Electroabsorption Saturation Intensity by Use of InGaAlAs as Barriers for InGaAs Multiple Quantum Wells,” Electronics Letters 31st January 1991 Vol. 27 No.3

[14] J. E. Zucker, T. Y, Chang, M. Wegener, N. J. Sauer, K. L. Jones, D. S. Chemla, “Large Refractive Index Changes in Tunable Electron Density InGaAs/InAlAs Quantum Well,” IEEE Photonics Technology Letters, Vol. 2, No. 1, pp29~31, January 1990

[15]賴民峰 撰, “以MBE成長與InP晶格匹配之三元及四元化合物半導體,” 國立中山大學光電工程研究所碩士論文, 中華民國九十一年六月

[16]王鴻森 撰, “分子束磊晶砷化合物半導體之摻雜及歐姆接觸,” 國立中山大學光電工程研究所碩士論文, 中華民國九十一年六月

[17]廖烝賢 撰, “應變型Ⅲ-Ⅴ磊晶結構的設計及MBE成長,” 國立中山大學光電工程研究所碩士論文, 中華民國九十一年六月
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.14.109.61
論文開放下載的時間是 校外不公開

Your IP address is 52.14.109.61
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code