Responsive image
博碩士論文 etd-0626103-163137 詳細資訊
Title page for etd-0626103-163137
論文名稱
Title
高屏峽谷與南海北部沈積物收集器的有孔蟲組合及其穩定同位素之季節性變化
Seasonal Variations of the Planktonic Foraminiferal Assemblages and Stable Isotopic Compositions: Sediment Trap Results from the Kao-ping Submarine Canyon and Northern South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-05-18
繳交日期
Date of Submission
2003-06-26
關鍵字
Keywords
南海、有孔蟲、高屏峽谷、沈積物收集器
the Kao-ping Submarine Canyon, South China Sea, planktonic foraminiferal, sediment trap
統計
Statistics
本論文已被瀏覽 5692 次,被下載 2397
The thesis/dissertation has been browsed 5692 times, has been downloaded 2397 times.
中文摘要
摘要
本論文工作係分析施放於高屏峽谷和南海的沈積物收集器的子樣品,分析項目包含粗顆粒、有孔蟲種屬的鑑定以及浮游性有孔蟲殼體的碳、氧同位素組成。
高屏峽谷收集串列的子樣品組成,除了粗顆粒含量及有孔蟲豐度變化有很大的差異以及受颱風影響之外,其他不同生物源顆粒各項參數變化量都非常有限。另外在颱風過境時底棲性有孔蟲豐度比浮游性有孔蟲豐度高,可見側向傳輸對該區顆粒沈降的影響。高屏峽谷收集串列的浮游性有孔蟲主要以副熱帶常見的種屬為Globigerinoides aequilateralis、Globigerinoide ruber、Globigerinoides sacculifer和Neogloboquadrina dutertrei, 同時在峽谷內也發現低緯區罕見的冷溫種屬Globigerina bulloides的殼體,顯示在沿岸地區營養鹽供應的效應。
南海北部收集器的記錄顯示沈積物的粗顆粒含量及有孔蟲豐度變化在1月及3月皆有增高的趨勢,推測與表水生產力提高有關。浮游性有孔蟲大致可歸納出兩大族群:一為適合在冷溫環境下生長種屬G. bulloides和N. dutertrei, 多出現於1月份;一為適合在暖溫環境下生長的種屬G. aequilateralis、G. ruber、G. sacculifer和Pulleniatina obliquiloculata, 多出現於3月份。
南海北部M1s和M2站三個浮游性有孔蟲種屬殼體的碳同位素有顯著差異。大致上以Orbulina universa 最重,G. sacculifer 次之,G. ruber 最輕。浮游性有孔蟲殼體氧同位素值季節性變化大於種屬之間的變化,三個種屬殼體的氧同位素值在10月份皆輕於1月和3月,應該是表水溫度所造成。從有孔蟲殼體氧同位素值與水文資料比較發現,G. ruber在南海北部是生存在較淺的水層(~10m);其次為G. sacculifer (~25m),而O. universa則生存在較深的水層(~70m)。另外浮游有孔蟲G. ruber的碳同位素組成及豐度皆與顆粒通量有明顯的負相關。
Abstract
Abstract

The carbon and oxygen isotopes of planktonic foraminifera, faunal assemblage, and coarse fraction of trap materials were analyzed in this study. The sediment traps were deployed in two lacations. One was in the Kao-ping submarine canyon and the other was in the northern South China Sea.
Variations of the individual concentrations from Kao-ping submarine canyon are small throughout the deployment interval except for the period when the Typhoon Chi-Te invaded southern Taiwan in July 2000. The results that benthic foraminifer abundances (#/g) are higher than that of planktonic foraminifera after typhoon invasion reflect the influence of particle settling by lateral transport. In addition, the major planktonic foraminifera found in canyon are Globigerinoides aequilateralis, Globigerinoides ruber, Globigerinoides sacculifer, and Neogloboquadrina dutertrei. At the same time, we also found Globigerina bulloides that usually lives in the high latitudes and cold temperature. It reveals the effect of nutrient supply along coastal region.
The coarse fraction contents and foraminiferal abundances collected by the traps in the northern South China Sea are both increasing in January and March. It could be associated with the enhanced surface productivity. The planktonic foraminifera divided into two groups based on their preferrence. The G. bulloides and N. dutertrei live in cold environment while G. aequilateralis, G. ruber, G. sacculifer, and Pulleniatina obliquiloculata preferr warm areas. In this study, G. bulloides and N. dutertrei were found in January whereas G. aequilateralis, G. rubber, G. sacculifer, and P. obliquiloculata were mostly in March.
The difference of carbon isotopes of planktonic foraminifera between species are distinct. Orbulina universa is the heaviest and G. ruber was the lightest. Foraminiferal d18O are depleted in October and enriched in January and March. It is suggested that sea surface temperature might be responsible for the variations of planktonic foraminiferal oxygen isotopes. Comparisons of foraminiferal d18O with the hydrographic data provide some informations. The results show that G. ruber lives in shallow water (~10m), G. sacculifer lives in 25m on average, and O. universa lives in deeper water layer (~70m) in northern South China Sea. Moreover, both the carbon isotopes and foraminiferal abundance of G. ruber show a negative correlation with the particles fluxes.
目次 Table of Contents
誌謝………………………………………………………………….I
中文摘要…………………………………………………………….II
英文摘要…………………………………………………………….III
目錄………………………………………………………………….IV
圖目錄……………………………………………………………….V
表目錄……………………………………………………………….VI

壹 前言………………………………………………………………..……1
1-1 研究背景…..………………………………………………..……1
1-2 前人研究…..……………………………………………………..2
1-3 研究目的……………………………………………………….…4
1-4 研究區域………………………………………………………....4
貳 材料及方法…………………………………………………………..…6
2-1 樣本的採集……………………………………………….…….10
2-1-1 沈積物收集器…………………………………………..10
2-1-2 拖網……………………………………………………..10
2-2 分析方法………………………………………………………..13
2-2-1 粗顆粒含量分析………………………………………..13
2-2-2 總碳、總有機碳及碳酸鈣含量分析…………….……..14
2-2-3 生物源矽質含量分析…………….……………………..14
2-2-4 顆粒態有機碳、氮的測定………………………………15
2-2-5 拖網標本處理…………………………………………...16
2-2-6 浮游性有孔蟲碳、氧同位素……………………………16
2-2-7 種屬鑑定與豐度……………………………………...…17
參 結果與討論…………………………………………………………....18
3-1 高屏峽谷………………………………………………………..18
3-1-1 各項參數的分析結果………………...…………………18
3-1-2 有孔蟲豐度變化…………………………………...……22
3-2 南海北部………………………………………………..………28
3-2-1 粗顆粒含量時序變化………………...…………………31
3-2-2 浮游性有孔蟲豐度變化………………………….……..35
A. 南海北部M1s站…………………………………….39
B. 南海北部M2站……………………………………...44
C. 總浮游性有孔蟲豐度比較…………………...……..51
3-2-3 浮游性有孔蟲豐度與顆粒通量的關係………………...53
3-2-4 浮游性有孔蟲碳、氧同位素的變化…………….……..55
A. 碳同位素的季節變化……………………………….58
B. 氧同位素的季節變化………………………..……...65
3-2-5 浮游性有孔蟲棲息深度………………………………...71
3-2-6 南海北部與拖網的浮游性有孔蟲碳、氧同位素比較…75
3-2-7 浮游性有孔蟲碳、氧同位素與顆粒通量的關係……...78
肆 結論………………………………………………………………..…..82
參考文獻…………………………………………………………..………85
中文部分……………………………………………………..…..85
英文部分………………………………………………………....87
附錄一 …………………………………………………………………....93
附錄二 …………………………………………………………………....97

圖目錄
圖一 研究區域位置圖…………………………………………………………..….....…7
圖二 高屏峽谷各項參數隨收集杯的變化情形……………………………………….20
圖三 高屏峽谷浮游性有孔蟲豐度的變化情形……………………………………….24
圖四 高屏峽谷沈積物收集器(A)浮游性有孔蟲豐度 (B)底棲性有孔蟲豐度 (C)總有孔蟲豐度的變化……………………………………………………………………….. 26
圖五 高屏峽谷浮游性有孔蟲主要種屬相對含量………………………….……….. .27
圖六 南海北部M2站第一、二次收集串列顆粒通量時序變化……….………….…29
圖七 南海北部六個主要優勢種屬…………………………………………………….30
圖八 M2站收集器中生物源顆粒隨深度的變化………………………………….…..33
圖九 M1s、M2的粗顆粒含量時序變化………………………………………..…….34
圖十 南海北部浮游性有孔蟲六個主要種屬相對豐度季節性變化…………..……...37
圖十一 南海北部M1s站浮游性有孔蟲豐度的變化…………………………………41
圖十二 南海北部M1s站浮游性有孔蟲主要種屬相對含量……………………....…43
圖十三 南海北部M2站浮游性有孔蟲豐度的變化…………………………….…….48
圖十四 南海北部M2站浮游性有孔蟲主要種屬相對含量…………………………..50
圖十五 南海北部M1s站與M2站總浮游性有孔蟲豐度…………………………….52
圖十六 南海北部M2站浮游性有孔蟲豐度與通量之關係…………………………..54
圖十七 M1s及M2站各深度收集杯之浮游性有孔蟲碳同位素…………………….56
圖十八 M1s及M2站各深度收集杯之浮游性有孔蟲氧同位素…………………….57
圖十九 南海北部浮游性有孔蟲碳同位素的變化…………………………………….63
圖二十 南海北部M2站溫度資料………..……………………………………………64
圖二十一 南海北部浮游性有孔蟲氧同位素時間的變化…………………………….68
圖二十二 南海北部M1s及M2站衛星影像照片.…………..……………………….69
圖二十三 南海時間序列SEATS計畫中S1測站溫鹽資料.…….……………….…70
圖二十四 浮游性有孔蟲氧同位素值與計算的氧同位素理論值的比較…………….74
圖二十五 南海北部和拖網的浮游性有孔蟲碳、氧同位素的比較…………………..77
圖二十六 M2站浮游性有孔蟲殼體碳、氧同位素與顆粒通量關係(未排除颱風
效應)…………………………………………………………………………80
圖二十七 M2站浮游性有孔蟲殼體碳、氧同位素與顆粒通量之關係(排除颱風
效應)…………………………………………………………………………81
表目錄

表一 錨錠資料…………………………………………………………..…….………8
表二 拖網資料……………………………………………………………..….………9
表三 分析的收集杯及日期…………………………………………………………..11
表四 各個站位分析參數項目………………………………………………………..12
表五 1998年4月 517航次 D3站水文資料及海水氧同位素值………………..73
參考文獻 References
伍、參考文獻
中文部分:
丁信中,1997,南海十五萬年來表水古生產力之變化,國立中山大學海洋地質及化學研究所碩士論文,共100頁。
王律江,1992,南海北部晚第四紀氧同位素紀錄與盆地水體流通狀況,南海晚第四紀古海洋學研究,青島,青島海洋大學出版社,第195-205頁。
林清芬,2000,南海及呂宋海峽海水氧同位素組成之研究,國立中山大學海洋地質及化學研究所碩士論文,共80頁。
洪佩瑩,2001,大鵬灣碳及營養鹽之生地化作用及通量研究,國立中山大學海洋地質及化學研究所碩士論文,共156頁。
陳文斌,除魯強, T. C. Jennerjahn, 1993,南海北部顆粒通量的初步研究,南海海洋沈積作用過程與地球化學研究,北京,海洋出版社,第191-201頁。
陳民本 ,1998,台灣四周海底地形與沈積物。國際海洋年「海洋、海軍、科技」,民國八十七年,十一月十九日至二十日,高雄。論文集,第1- 14頁。
陳建芳,鄭連福,M. G. Wiesner, 1998,基于沈積物捕獲器的南海表層初級生產力及輸出生產力估算,科學通報 43(6),639-106頁。
陳榮華,翦知湣,鄭玉龍,陳建芳,2000,南海中部浮游有孔蟲通量的季節變化,同濟大學學報 28,73-77。
張慧貞,2002,南海北部海域之沈降顆粒及沈積物:顆粒通量與鉛-210之分佈,國立中山大學海洋地質及化學研究所碩士論文,共64頁。
游智謙,2002,南海北坡晚第四紀沈積物有機碳碳同位素的變化,國立中山大學海洋地質及化學研究所碩士論文,共83頁。
蔡康齡,2002,南沖繩海槽西端顆粒物質中鉛-210與釙-210之不平衡現象,國立中山大學海洋地質及化學研究所碩士論文,共57頁。
翦知湣,陳民本,林慧玲,汪品先,1998,從穩定同位素與微體化石看南海南部末次冰消期古海洋學變化之階段性,中國科學 (D)輯,28(2),第118-124頁。
謝英宗,1993,台灣東部海域晚第四紀之古海洋,國立台灣大學海洋研究所博士學位論文,共225頁。








英文部分:
Bé, A.W.H. (1960) Ecology of recent planktonic foraminifera: Part II Bathymetric and seasonal distributions in the Sargasso Sea off Bermuda. Micropaleontology, 6, 373-392.
Bé, A.W.H. (1977) An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera, In (Ramsay, A.T.S. ed.), Oceanic Micropaleontology, 1-100, Academic Press.
Berger, W.H., J. S. Killingley and E. Vincent (1978) Stable isotopes in deep-sea carbonates: Box core ERDC-92, west Equatorial Pacific, Oceanologica Acta, 1, 203-216.
Bemis, B.E., H. J. Spero, J. Bijma and D. W. Lea (1998) Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Expermental results and revised paleotemperature equations. Paleocenography, 13, 150-160.
Broecker, W.S. and T. H. Peng (1982) Tracer in the Sea, Eldigio Press, Palisades, New York, 690. pp.
Chen, M.T., H. W. Ho., T. D. Lai., L. Zheng., Q. Miao., K. S. Shea., M. P. Chen., P. Wang., K. Y. Wei and C. Y. Huang (1998) Recent planktonic foraminifers and their relationships to surface ocean hydrography of the South China Sea. Marine Geology, 146, 173-190.
Chu, T. S. (1972) A study on the water exchange between Pacific Ocean and the South China Sea, Acta Oceanogr. Taiwanica, 2, 11~24.
Colombo J.C., N. Silverberg and J. N. Gearing (1996) Biogeochemistry of organic matter in the Laurentian Trough, I. Composition and vertical fluxes of rapidly settling particles, Mar. Chem., 51, 277-293.
Deuser, W.G., T. D. Jickells, P. King and J. A. Commeau (1995) Decadal and annual changes in biogenic opal and carbonate fluxes to the deep Sargasso Sea. Deep-Sea Research I, 42, 1923-1932.
Divakar Naidu, P. (1993) Distribution patterns of Recent planktonic foraminifera in surface sediments of the western continental margin of India. Marine Geology, 110, 403-418.
Fairbanks, R.G., P. H. Wiebe and A. W. H. Bé (1980) Vertical distribution and isotopic composition of living planktonic foraminifera in the western North Atlantic. Science, 207, 61-63.
Fang, G.H., W. D. Fang, Y. Fang and K. Wang (1998) A survey of the South China Sea upper ocean circulation. Acta Oceanographica Taiwanica, 37, 1-16.
Guptha, M.V.S., W. B. Curry, V. Ittekkot and A. S. Muralinath (1997) Seasonal variation in the flux of planktic foraminifera: Sediment trap results from the Bay of Bengal, Northern Indian Ocean, Journal of Foraminiferal Research, 27, 5-19.
Heussner, S., C. Ratti and J. Carbonne (1990) The PPS 3 time-series sediment trap and the trap sample processing techniques used during the ECOMARGE experiment. Cont. Shelf Res., 10, 943-958.
Honjo, S. (1982) Seasonality and interaction of biogenic and Lithogenic particulate flux at the Panama Basin, Science, 218, 883-884.
Honjo, S. and K. W. Doherty (1988) Large aperture time series sediment traps; design objectives, construction and application, Deep-Sea Research, 35, 133-149.
Hung, J.J., C. S. Lin, G. W. Hung and Y. Chung (1999) Lateral transport of lithogenic particles from the continental margin of the Southern East China Sea. Estuarine Coastal and Shelf Science, 49, 483-499.
Ittekkot, V., R. R. Nair, S. Honjo, V. Ramasw, M. Bartsch, S. Manganini and N. B. Desai (1991) Enhanced particle fluxes in Bay of Bengal induced by injection of fresh water, Nature, 351, 385-387.
Lin, H.L., L. W. Wang, C. H. Wang and G. C. Gong (1999) Vertical distribution of δ13C of dissolved inorganic carbon in the northeastern South China Sea. Deep-Sea Research I, 46, 757-777.
Liu, K.K., S. Y. Chao, P. T. Shaw, G. C. Gong, C. C. Chen and T. Y. Tang (2002) Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep-Sea Research I, 49, 1387-1412.
Meyers, P.A. (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 144, 289-302.
Mix, A.C. (1989) Pleistocene productivity: Evidence from oganic carbon and foraminiferal species. In: productivity of the Ocean: Present and Past, W. H. Berger, Smetacek, and G. Wefer (Eds.), pp. 313-340.
Monaco A., X. D. de Madron, O. Radakovitch, S. Heussner and J. Carbonne (1999) Origin and variability of downward biogeochemical fluxes on the Rhone continental margin(NW Mediterranean). Deep-Sea Research I, 46, 1483-1511.
Nair, R.R., V. Ittekkot, S. Y. Manganini, V. Ramaswamy, B. Haake, E. T. Degens, B. N. Desai and S. Honjo (1989) Increased particle flux to the deep ocean related to monsoons, Nature, 338, 749-751.
Prell, W.L., and W. B., Curry (1981) Faunal and isotopic indices of monsoonal upwelling, Western Arabian Sea. Oceanologica Acta, 4, 91-98.
Ravelo, A.C. and R. G. Fairbanks (1992) Oxygen isotopic composition of multiple species of planktonic foraminifera: Recorders of the modern photic zone temperature gradient. Paleoceanography, 7, 815-831.
Riley, J.P. (1975) Analytical chemistry of sea water, Chemical Oceanography, 3, 2nd ed., Riley and Skirrow eds., Academic Press, New York, 193-514.
Sautter, L.R. and R. C. Thunell (1991) Planktic foraminiferal response to upwelling and seasonal hydrographic conditions: sediment trap results from San Pedro Basin, Southern California Bight. Journal of Foraminiferal Research, 21, 347-363.
Shackleton, N.J. (1967) Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature, 215, 15-17.
Shaw, P. T., (1989) The intrusion of water masses into the sea southwest of Taiwan, J. Geophys. Res., 94, 18213-18226.
Sheu D.D., W. C. Jou, Y. C. Chung, T. Y. Tang and J. J. Hung (1999) Geochemical and carbon isotopic characterization of particles collected in sediment traps from the East China continental slope and the Okinawa Trough northeast of Taiwan. Continental shelf Research, 19, 183-203.
Spero, H.J., I. Lerche and D. F. Williams (1991) Opening the carbon isotope “vital effect” black box, 2, quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography, 6, 639-655.
Spero, H.J. (1992) Do planktonic foraminifera accurately record shifts in the carbon isotope composition of seawater Σ CO2 ? Marine Micropaleontology, 19, 275-285.
Spero, H.J. and D. W. Lea (1996) Experimental determination of stable isotope variability in Globigerina bulloides: Implications for paleoceanographic reconstructions. Marine Micropaleontology, 28, 231-246.
Spero, H.J., J. Bijma and D. W. Lea (1997) Effect of the seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature, 390, 497-500.
Sverdrup, H.U., M. W., Johnson and R. H., Fleming (1942) The Oceans, Prentice Hall, New York, 1087pp
Thunell R.C., B. C. Curry and S. Honjo (1983) Seasonal variation in the flux of planktonic foraminifera: Time series sediment trap results from the Panama Basin. Earth Planet Sci Let, 64, 44-55.
Thunell. R. C. (1998) Particle fluxes in a coastal upwelling zone: Sediment trap results from the Santa Barbara Basin, California. Deep-Sea Research, 45, 1863-1884.
Thunell, R.C., E. Tappa, C. pride and E. Kincaid (1999) Sea-surface temperature anomalies assciated with the 1997-1998 El Niňo recorded in the oxygen isotope composition of planktonic forminifera. Geology, 27, 843-846.
Wang, C.H., M. P. Chen, S. C. Lo and J. C. Wu (1986) Stable isotope records of late Pleistocene sediments from the South China Sea. Bull. Inst. Earth Sci., Academia Sinica, 6, 185-195.
Wiesner, M.G.L., H. K. Zhang, Y. Wang Wong and W. Chan (1996) Fluxes of particulate matter in the South China Sea, in: Particle Flux in the Ocean, John Wiley and Sons, New York, 91-154.
Wyrkti, K. (1961) Physical oceanography of the South-East Asian water, Scientific results of marine investigations of the South China Sea and Gulf of Thailand, 1959-1961, Naga Report 2, 195pp.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code