Responsive image
博碩士論文 etd-0626103-171551 詳細資訊
Title page for etd-0626103-171551
論文名稱
Title
功能性磁振造影手部運動功能評量監測系統
A Monitoring System for Performance Evaluation of Hand Motor Task in Functional MRI Environment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-12
繳交日期
Date of Submission
2003-06-26
關鍵字
Keywords
運動功能、監測系統、功能性磁振造影、力量量測
monitoring system, functional MRI, force measurement, motor task
統計
Statistics
本論文已被瀏覽 5729 次,被下載 3644
The thesis/dissertation has been browsed 5729 times, has been downloaded 3644 times.
中文摘要
摘要
本論文主題為配合功能性磁振造影研究針刺對於中風復健的功效及機轉,提出一套運動監測系統,針對在f MRI環境內的手部運動加以觀察記錄。在臨床研究部份假設針灸刺激對於腦部的運動系統的恢復有助益,而神經生理機轉可藉由功能性磁振造影圖譜術加以探索。同時針灸對腦部運動系統影響的個別差異,可能可以解釋為何臨床上針灸對中風的療效的個體差異性。因此擬以運動系統為主,針對中風病人作功能性磁振造影的研究,而以手腕手掌運動功能與功能腦圖譜相比對。
此運動監測系統是必須可以在磁場裡面使用的,同時因為病人的肌力量表微弱,所以對於微小的肌肉運動須十分敏感。因此必須設計一套新的量測系統來符合這樣的需求,其中包括兩部分的訊號擷取-位置與力量,透過兩個子系統,分別針對手部位置變化情形以感應手套量測,對手部施力變化則以壓力系統量測。整合此兩項資料便能與功能腦圖譜相比對,而對於手部運動與腦部功能區反應的相關性能更深入瞭解。
本監測系統在整合手部位置、力量之訊號與功能性磁振造影圖譜顯像,將可延伸成為一復健診斷機制。透過資料分析整合能夠即時觀察復健狀態,以期規劃進一步之復健計畫,達到迅速、正確、完整的復健規劃。
關鍵字:功能性磁振造影、監測系統、運動功能、力量量測
Abstract
Abstract
In this dissertation, we aim to study the acupuncture effect on stroke rehabilitation. To achieve this purpose, a monitoring system for performance evaluation of motor task in functional MRI environment is developed.
The hypothesis of the clinical study is that acupuncture stimulation at motor zone of scalp acupoint could modulate the brain activation of motor system. Such modulation effect can be explored by fMRI. So we use the monitoring system can be used to observe patients with predominantly motor deficit without remarkable speech problem. Besides the fMRI findings of motor activation and clinical motor performance will be compared.
The monitoring system must be magnetic field compatible, and furthermore, it can also detect very subtle motor performance in the case of stroke during recovery. So the specific requirements of the system challenge the need. The system includes two subsystems. One collects the position signal using a data glove and the other acquires the force signal with a pneumatic system. The understanding of the correlation of the motor task and the brain activation in depth through the integration of the position and force data can therefore be greatly improved. The monitoring system will extend to be the estimation of recovery through the integration of motor task and fMRI.

Keyword: functional MRI、monitoring system、motor task、force measurement

目次 Table of Contents
目錄
目錄…………………………………………………………………….…I
圖索引…………………………………………………………………..III
表索引…………………………………………………………………..IX
中文摘要…………………………………..…………………………….X
英文摘要…………………………………..……………………………XI
第一章 緒論
1-1前言……………………………………………………………1
1-2研究動機與目的………………………………………………2
1-3文獻回顧………………………………………………………3
1-4研究方向………………………………………………………6
1-5論文架構………………………………………………………9
第二章 簡介
2-1 f MRI概述……………………………………………………..10
2-2腦部活化機制….………………………………………………14
2-3手部認知……………………………………………………….17
2-3-1手部姿勢簡介…………………………………………..17
2-3-2手部運動模式規劃……………………………………..20

第三章 運動監測系統
3-1概念分析……………………………………………………...25
3-1-1功能性磁振造影…………………………………………26
3-1-2位置量測系統……………………………………………31
3-1-3握力量測系統……………………………………………31
3-2系統架構……………………………………………………...33
第四章 位置量測
4-1感應手套簡介…………………………………………………36
4-1-1環境限制………………………………………………….36
4-1-2實用性考量……………………………………………….37
4-1-3運動資料分析…………………………………………….37
4-2系統架構與流程………………………………………………38
4-2-1感應手套構造與應用…………………………………….39
4-2-2感應手套元件與應用流程……………………………….42
4-2-3 PMS後端資料處理角度分析……………………………45
4-2-4 PMS後端資料處理頻率分析……………………………55
4-2-5 PMS後端資料處理系統軟體架構………………………60
4-3問題分析與探討……………………………………………….62

第五章 握力量測
5-1設計概念……………………………………………………….65
5-2系統架構與流程……………………………………………….68
5-2-1拉把模組…………………………………………………..69
5-2-2活塞模組…………………………………………………..72
5-2-3傳輸模組…………………………………………………..74
5-2-4量測模組…………………………………………………..74
5-2-5量測流程…………………………………………………..76
5-2-6FMS後端資料分析………………………………………..78
5-3問題分析與探討………………………………………………..82
第六章 實驗規劃分析與結論
6-1實驗架構………………………………………………………85
6-1-1fMRI實驗規劃……………………………………………85
6-1-2手部位置量測實驗規劃………………………………….90
6-1-3手部力量量測實驗規劃………………………………….95
6-2結果與分析………………………………………………………98
6-2-1 fMRI影像分析…………………………………………….98
6-2-2 PMS彎曲角度結果分析…………………………………105
6-2-3 PMS反應時間結果分析…………………………………110
6-2-4 FMS結果分析……………………………………………123
第七章 結論
7-1結論……………………………………………………………..125
7-2未來展望………………………………………………………..126
參考文獻………………………………………………………………127
附錄
附錄1……………………………………………………………….133
附錄2……………………………………………………………….134
附錄3……………………………………………………………….135
附錄4……………………………………………………………….135
參考文獻 References
參考文獻

[1] Ogawa, S., T.M. Lee, A.S. Nayak, and P. Glynn, “Oxygenation -sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields,” Magn. Reson. Med., vol. 14, pp. 68-78, 1990.

[2] Ogawa, S., and T.M. Lee, “Magnetic resonance imaging of blood vessels at high fields: In vivo and in vitro measurements and image simulation,” Magn. Reson. Med., Vol. 16, pp. 9-18, 1990.

[3] Ogawa, S., T.M. Lee, A.R. Kay, and D.W. Tank, “Brain magnetic resonance imaging with contrast dependent on blood oxygenation,” Proc. Nat. Acad. Sci. USA, Vol. 87, pp. 9868-9872, 1990.

[4] Kwong, K.K., J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, R.M. B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.M. Cheng, T.J. Brady, and B.R. Rosen, “Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation,” Proc. Nat. Acad. Sci. USA, Vol. 89, No. 12, pp. 5675-5679, 1992.

[5] Bandettini, P.A., E.C. Wong, R.S. Tikofsky, R.S. Hinks, and J.S. Hyde, “Time course EPI of human brain function during task activation,” Magn. Reson. Med., Vol. 25, No. 2, pp. 390-397, 1992.

[6] Ogawa, S., D.W. Tank, R. Menon, J.M. Ellermann, S.G. Kim, H. Merkle, and K. Ugurbil, “Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic res-onance imaging,” Proc. Nat. Acad. Sci. USA, Vol. 89, No. 13, pp. 5951-5955, 1992.

[7] Ugurbil, K., A. Shmuel, and J. Pfeuffer, “Magnetic resonance imaging of brain function and neurochemistry,” Proceedings IEEE, Vol. 89, No. 7, pp. 1093-1105, July 2001.

[8] Macey, K.E., P.M. Macey, M.A. Woo, L.A. Henderson, R.C. Frysinger, J.R. Alger, and R.M. Harper, “Neural signal changes associated with cardiac and respiratory measures vs boxcar analysis in functional magnetic resonance imaging (fMRI),” Proceedings of The 23rd Annual EMBS International Conference, pp. 2315-2318, October 25-28, Istanbul, Turkey 2001.

[9] Niazy, R.K., Q. Maolin, D. Zhensheng, J. Enderle, and L. Song, “Normal aging and brain functional connectivity of primary motor cortex: a functional MRI(fMRI) Study,” Bioengineering Conference, Proceedings of the IEEE 28th Annual Northeast, pp. 153-154, 2002.

[10] Singh, M., D. Khosla, D. Rice, T. Kim, and H. Kim, “Combining functional MRI and EEG source -imaging,” IEEE Nuclear Science Symposium and Medical Imaging Conference, Vol. 4, pp. 1547-1550, 30 Oct-5 Nov 1994.

[11] Yang, J.R., M.J. Chiu, G.M. Huang, and J.H. Chen, “Evaluation of functional MR imaging (fMRI)analysis methods,” Proceedings of IEEE 17th Annual Conference on Engineering in Medicine and Biology Society, Vol. 1, pp. 485-486, 20-25, Sep 1995.

[12] Singh, M., L. Al-Dayeh, and P. Patel, “2D and 3D nonrigid body registration in fMRI,” IEEE Nuclear Science Symposium, Vol. 2, pp. 1474-1478, 2-9, Nov 1996.

[13] Solo, V., E. Brown, and R. Weisskoff, “A signal processing approach to functional MRI for brain mapping,” Proceedings of the International Conference on Image Processing, pp. 121-123, 26-29 Oct 1997.

[14] Chen, M., T. Kanade, H.A. Rowley, and D. Pomerleau, “Quantitative study of brain anatomy,” Proceedings of the Workshop on Biomedical Image Analysis, pp. 84-92, 26-27 Jun 1998.

[15] E.M., Haacke, “Functional brain mapping,” ICIP 98. Proceedings of the International Conference on Image Processing, Vol., 2, pp. 1-4, 4-7 Oct 1998.

[16] Fu, Z., Y. Hui, and Z.P. Liang, “Joint spatiotemporal statistical analysis of functional MRI data,” Proceedings of the International Conference on Image Processing ICIP 98, Volume: 1, pp. 709-713, 4-7 Oct 1998.

[17] Desombes, X., F. Kruggel, and D. Yves von Cramon “Spatio-temporal fMRI analysis using Markov random fields,” IEEE Transactions on Medical Imaging, Vol. 17, No. 6, pp. 1028-1039, Dec 1998.
[18] Babiloni, F., F. Carducci, C. Del Gratta, C. Babiloni, G.M. Roberti, G.L. Romani, C. Caltagirone, P.M. Rossini, and A. Urbano, “Combined high resolution EEG and functional MRI data for modeling of cortical sources of human movement-related potentials,” Proceedings of The 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No. 4, pp. 2135-2138, 1998.

[19] Nakasato, N., T. Inoue, A. Takahashi, A. Kanno, K. Hatanaka, H. Shimizu, T. Kumabe, and T. Yoshimoto, “Combined of magnetoencephalography (MEG)and functional magnetic resonance imaging (fMRI)for neurosurgical mapping of the sensory and motor cortices,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 20, No. 4, pp. 2209-2212, 1998.

[20] Dodel, S., J.M. Herrmann, and T. Geisel, “Components of brain activity –data analysis for fMRI,” Artificial Neural Networks Conference, pp. 1023-1028, 7-10 Sep, 1999.

[21] Lukic, A.S., M.N. Wernick, and S.C. Strother, “An evaluation of methods for detecting brain activations from PET or fMRI images,” IEEE Nuclear Science Symposium, Vol. 2, pp. 1119-1123, 1999.

[22] Weiller, C., F. Chollet, K.J. Friston, R.J.S. Wise, and R.S.J. Frackowiak “Functional reorganization of the brain in recovery from striatocapsular infarction in man,” Ann Neural Vol. 31, PP. 463-472, 1992.

[23] Weiller C, S.C. Ramsay, and R.J.S. Wise, “Individual patterns of functional reorganization in the human cerebral cortex after capsular infarction,” Ann Neural Vol. 29, pp. 181-189, 1993.

[24] Cramer, S.C., G. Nelles, R.R. Benson, J.D. Kaplan, R.A. Parker, K.K. Kwong, D.N. Kennedy, S.P. Finklestein, and B.R. Rosen, “A functional MRI study of subjects recovered from hemisphere stroke,” Stroke Vol. 28, pp. 2518-2527, 1997.

[25] Keiji, I., M. Yumoto, K. Yoshikawa, H. Kamei, and S. Ueno, “Measurement somatosensory evoked response using functional MR Images and MEG,” IEEE Transactions On Magnetics, Vol. 33, No. 5, pp. 4260-4262, September 1997.

[26] Cao, Y., L. D'Olhaberriague E.M. Vikingstad, S.R. Levine, and K.M. Welch, “Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis,” stroke Vol. 29, pp. 112-122, 1998.

[27] Jancke, L., K. Specht, S. Mirzazade, R. Loose, M. Himmelbach, K. Lutz, and N.J. Shah, “A parametric analysis of the ‘rate effect’ in the sensorimotor cortex: a function magnetic resonance imaging analysis in human subjects,” Neuroscience Letters Vol. 252, pp. 37-40, 1998.

[28] Thickbroom, G.W., B.A. Phillips, I. Morris, M.L. Byrnes, and F.L. Mastaglia “Isometric force-related activity in sensorimotor cortex measured with functional MRI,” Experimental Brain Research Vol. 121, pp. 59-64, 1998.

[29] Wu, M.T., J.M. Sheen, K.H. Chuang, P. Yang, S.L. Chin, C.Y. Tsai, C.J. Chen, J.R. Liao, P.H. Lai, K.A. Chu, H.B. Pan, and C.F. Yang, “Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture,” NeuroImage Vol. 16, pp. 1028-1037, 2002.

[30] Plewes D.B., C.A. Piron, C. Luginbuhl, R. Jong, P. Causer, and R. Shumak, “A hybrid breast biopsy system combing ultrasound and MRI,” pp. 1355-1359, IEEE Ultrasound Symposium 2001.

[31] Malaviya, C.N., S. Husain, “Evaluation of methods of claw finger correction using the finger dynamography technique,” Journal of hand Surgery(British and European Volume), 18B: 635-638, 1993.

[32] Alsayegh, O., N. Vujovic, and D. Brzakovic, “Hand gesticulation interpretation via smart sensing,” Signals, Proceedings of the Twenty-Eighth Asilomar Conference on Systems and Computers, Vol. 2, pp. 1272-1276, 31 Oct-2 Nov 1994.

[33] Min, B.W., H.S. Yoon, J. Soh, Y.M. Yang, and T. Ejima, “Hand gesture recognition using hidden Markov models,” IEEE International Conference on Computational Cybernetics and Simulation, Vol. 5, pp. 4232-4235, 12-15 Oct 1997.

[34] Hunt, J.M., The Rehabilitation of the Hand, 3rded, St. Louis, Mosby, 1990.


[35] Smith, L.K., Brunnstrom’s Clinical Kinesiology, Hanil Medical Book Center, pp.216-218, 1996

[36] CTF MEG Introduction, 腦磁圖與其他腦功能測量技術的比較, CTF Systems Inc, http://www.ctf.com/home_big5.html

[37] 莊凱翔,核磁共振影像原理及應用,MRI教學講義,2002。 http://home.kimo.com.tw/khchuang.tw/mri2002.html

[38] 莊凱翔,以模糊神經網路辨識功能性核磁共振影像之信號波形, 國立臺灣大學電機工程研究所碩士論文,1996。

[39] 邱銘章,功能性磁振影像分析及神經科學之應用,國立臺灣大學電機工程研究所博士論文,2000。

[40] 張智穎,以動脈血液標記磁振影像研究腦血流灌注,國立陽明大學放射醫學科學研究所碩士論文,2002。

[41] 邱皓雲,不同視覺刺激強度對功能性核磁共振影像與腦電訊號的影響,國立臺灣大學電機工程研究所碩士論文,1998。

[42] 陳巧芳,疼痛知覺之中樞神經機轉-功能性磁振造影實驗模式的建立,國立陽明大學神經科學研究所碩士論文,2000。

[43] 李佳穎,論漢字唸名的形音轉換機制-認知實驗與功能性腦造影之整合研究,國立中正大學心理學研究所碩士論文,2001。

[44] 陳致寧,以功能性磁振造影探索人類大腦聽覺系統-於1.5T臨床磁共振儀之初步研究,國立臺灣大學電機工程研究所博士論文,2002。

[45] 謝秀敏,應用功能性磁振造影研究周邊神經損傷病人之中樞運動系統可塑性,國立陽明大學神經科學研究所碩士論文,2001。

[46] 林立峰,利用功能性磁振造影評估中風病人經過動作恢復後的腦部活化機制,國立陽明醫學工程所碩士論文,2002。

[47] 劉勝賢,最大手指運動範圍在評估手指運動功能之應用,國立成功大學醫學工程研究所碩士論文,1994。

[48] 溫文仲,手功能評估,國立成功大學醫學工程研究所碩士論文 ,1995。

[49] 史傑州,應用感應手套模擬手部復健評估,國立成功大學工業設計系碩士論文,1999。

[50] 李明義、鄭智仁,長庚一號(CGU-1)運動控制診斷評估用手套之開發,長庚大學機械工程研究所,醫療自動化與復健工程研發室,1999。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code