Responsive image
博碩士論文 etd-0626105-214331 詳細資訊
Title page for etd-0626105-214331
論文名稱
Title
調變顯微鏡的應用 — 黏滯係數量測
Application of Modulation Microscopy — Viscosity Measurement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
45
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-21
繳交日期
Date of Submission
2005-06-26
關鍵字
Keywords
調變、黏滯係數、共焦
confocal, viscosity, modulation
統計
Statistics
本論文已被瀏覽 5654 次,被下載 2241
The thesis/dissertation has been browsed 5654 times, has been downloaded 2241 times.
中文摘要
黏滯性質是流體中一極重要參數,雖然傳統量測黏滯方法,在其特定之量測範圍內正確無虞,但是耗時短、廣泛應用範圍、非接觸式的量測方法,仍被廣為所期待,這類型的方法因微流體學新技術、領域的發展,有極大之進展。
基於這樣的期待,我們發展出在微觀下,量測黏滯係數的新技術,這個新技術具有簡明、非侵入性、即時性、應用範圍廣泛以及影像掃描能力。這套方法係結合雷射掃描共焦顯微術、鎖相放大技術以及可變速度掃描技巧,使這套系統功能更強大,且可運用於生物醫學的探索。源於共焦架構的調變顯微術,可用以偵測樣品在振盪下的形變,這個形變即是造成訊號延遲的主因,黏滯係數能由相位延遲的大小判定。
Abstract
Viscosity is an important parameter in fluid dynamics. Although many conventional techniques are useful in determining a limited range of liquid viscosity with high accuracy, non-invasive measurement techniques for a broader range of viscosity are yet to be developed. The subjects on viscosity are advancing rapidly partly due to the development and applications of microfluidic.
In anticipation of such developments, we are proposing a new method of viscosity measurement in the micrometer scale that is simple, non-invasive, real-time, wide dynamics range, and with imaging capability. This method relies on successful integration of laser scanning confocal microscopy, lock-in amplification, and variable galvono-scanning. It also has the potential to be a powerful tool in biology and medicine. The principle of operation is based on modulation microscopy that employs confocal configuration in detecting the deformation and phase delay of the forced oscillating sample.
目次 Table of Contents
Acknowledgement.........................................Ⅰ
中文摘要................................................Ⅱ
Abstract................................................Ⅲ
Table of Contents.......................................Ⅳ
List of Figures.........................................Ⅵ
List of Tables..........................................Ⅶ
Table of Parameters.....................................Ⅷ
Chapter 1 Introduction.................................1
1.1 Background...........................................1
1.2 Motivation...........................................1
1.3 Literature Search....................................2
1.4 Organization of this Thesis..........................3
References...............................................4
Chapter 2 Principles of Operation......................6
2.1 Motion of Damped Forced Oscillation..................6
2.2 Frequency-Domain Phase-Modulation....................7
References..............................................10
Chapter 3 Experimental................................11
3.1 Experimental Setup..................................11
3.2 Experimental Components.............................12
3.2.1 Pinhole...........................................12
3.2.2 Lock-in Amplification.............................14
3.2.3 Variable Galvono-Scan.............................16
3.3 Experimental Procedures.............................16
3.3.1 Modulation Microscopy.............................17
3.3.2 Viscosity Measurement of Jelly and Liquid Soap....17
References..............................................20
Chapter 4 Results and Discussions.....................21
4.1 Experimental Results................................21
4.2 Interpreting the Cross Point........................23
4.3 Image Reconstruction................................25
4.4 Discussions and Analysis............................25
4.5 Comparison with Other Experiments...................26
References..............................................28
Chapter 5 Conclusion and Future Planning..............29
5.1 Conclusion..........................................29
5.2 Future Planning.....................................29
Appendix A..............................................31
Appendix B..............................................32
參考文獻 References
[1.1]C. J. R. Sheppard et al, “Confocal laser scanning microscopy” Springer (1997).
[1.2] M. Minksy, U.S. Patent No.3, 013,467, Dec. 19 (1961).
[1.3] H. Mocker et al., “Mode competition and self-locking effects in a Q-switched ruby laser” Appl. Phys. Lett. 7,270 (1965)
[1.4] T. H. Maiman, Nature 187, 493 (1960).
[1.5] John G. Giddings et al. “Development ofa high-pressure capillary-tube viscometer and its application to methane propane and their mixtures in the gaseous and liquid regions”, J. Che. Phys. vol.45 No.2 (1965)
[1.6] Cigdem Dindar et al., “Reliable method for determination of the velocity of a sinker in a high-pressure falling body type viscometer”, Rev. Sci. Inst. vol.73 No.10 (2002)
[1.7] Wei-chih Wang et al., “Fluid viscosity measurement using forward light scattering”, Meas. Sci. Technol. 10, 316 (1999)
[1.8] Shin-ichi Momozawa et al., “Viscosity measurement in liquid using transversal effects of piezoceramic disk-type PZT transducer in the frequency range of 70-430 kHz”, Jpn. J. Appl. Phys. vol.40 3654 (2001)
[1.9] Wan Y. Shih et al., ”Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers”, J. Appl. Phys. vol.89 No.2 (2001)
[1.10] Shigao Chen et al., “Quantifying elasticity and viscosity from measurement of shear wave speed dispersion”, J. Acou. Soc. Am. 155, 6 (2004)
[1.11] Shigao Chen et al., “Remote measurement of material properties from radiation force induced vibration of an embedded sphere”, J. Acou. Soc. Am. 112, 3 (2002)
[1.12] S. Chen, M. Fatemi et al., “Shear property haracterization of viscoelastic media using vibrations induced by ultrasound radiation force”, IEEE ultra. sym. (2002)
[1.13] Mostafa Fatemi et al., “Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission”, Pro. Natl. Acad. Sci. ISA vol.96 6003 (1999)
[1.14] T. Oba et al., “Development of laser-induced capillary wave method for viscosity measurement using pulsed carbon dioxide laser”, Inter. J. Ther. Vol.25 No.5 (2004)
[1.15] Y. Yoshitake et al., “Measurement of high viscosity with laser induced surface deformation technique”, J. Appl. Phys. 97 (2005)
[1.16] M. Antognozzi et al., “Observation of molecular layering in a confined water film and study of the layers viscoelastic properties”, App. Phys. Lett. Vol.78 No.3 (2001)
[1.17] M. T. Valentine et al., “Forces on a colloidal particle in a polymer solution: a study using optical tweezers.”, J. Phys.: Condens. Matter 8, 9477 (1996)
[1.18] Boaz A. Nemet et al., “Imaging microscopic viscosity with confocal scanning optical tweezers”, Opt. Lett. Vol.27, No.4 (2002)
[1.19] Boaz A. Nemet et al., “Microscopic flow measurements with optically trapped microprobes”, Opt. Lett. Vol.27, No.15 (2002)
[1.20] Boaz A. Nemet et al., “Measuring microscopic viscosity with optical tweezers as a confocal probe”, Appl. Lett. Vol.42, No.10 (2003)
[2.1] Harris Benson, “University physics”, John Wiley & Sons, inc. (1991)
[2.2] Joseph R. Lakowicz, “Principles of fluorescence spectroscopy 2nd edition”, KA/PP (1999)
[2.3] Z. Gaviola, Z. Phys. 42, 853 (1926)
[2.4] Gratton E., “The measurement and analysis of heterogeneous emissions by multifrequency phase and modulation fluorometry”, Appl. Spectrosc. Rev. 20(1) 55 (1984)
[2.5] Gratton E., “Multifrequency phase and modulation fluorometry”, Annu. Rev. Biophys. Bioeng. 13, 105 (1984)
[2.6] Bright F. V. et al., “Advances in multifrequency phase and modulation fluorescence analysis”, Anal. Chem. 21, 389 (1990)
[2.7] Lakowicz J. R., “Frequency-domain fluorometry for resolution of time-dependent fluorescence emission”, Spectrosc. 1, 28 (1985)
[2.8] Rabinovich et al., “A compact, LED-based phase fluorimeter-detection system for chemical and biosensor arrays”, Proc. SPIE 3258, 2 (1998)
[2.9] Hui-Hui Zeng et al., “Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optical biosensor”, Anal. Chem. 75, 6807 (2003)
[2.10] Lakowicz J. R. et al., “Frequency-domain fluorescence spectroscopy”, Plenum Press, New York (1991)
[3.1] C. J. R. Sheppard et al, “Confocal laser scanning microscopy” Springer (1997).
[3.2] Reamwood Avenue et al, “Model SR830 DSP lock-in amplifier” SRS, inc. California (1993).
[3.3] “User’s manual — Fluoview FV300” Olympus, inc.
[3.4] Ping-chin Cheng et al, “Multi-photon fluorescence microscopy — the response of plant cells to high intensity illumination”, Micron 32, 661 (2001)
[3.5] Kenneth P. Ghiggino et al, “Fluorescence lifetime measurement using a novel fiber-optic laser scanning microscope”, Rev. Scl. Inst., 63, 5, 2999 (1992)
[3.6] Rajesh Babu Sekar et al, “FRET microscopy imaging of live cell protein localizations”, J. Cell Bio., 160, 5, 629 (2003)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code