Responsive image
博碩士論文 etd-0626106-215402 詳細資訊
Title page for etd-0626106-215402
論文名稱
Title
雷射光纖構裝中光纖元件的製作與量測
Fabrication and Characterization of the Fiber Component in Laser Module Packaging
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
158
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-07
繳交日期
Date of Submission
2006-06-26
關鍵字
Keywords
透鏡光纖頭端研磨、焊錫固定、定位控制、收發模組、光纖元件構裝、熔接面檢測
Splicing Plane, Lensed Fiber, Soldering Mechanism, Laser Module, Positioning, Fiber Component Packaging
統計
Statistics
本論文已被瀏覽 5662 次,被下載 2431
The thesis/dissertation has been browsed 5662 times, has been downloaded 2431 times.
中文摘要
在光纖通訊系統中,光收發模組對於系統的效能有決定性的影響,因此收發模組的構裝品質也決定了其通訊性能的好壞。在模組中,由於光訊號是透過雷射與光纖來發送,所以兩者之間能否有效的傳遞光線,也就是雷射光纖構裝的耦光效率便顯得非常重要。加上這些元件本身的尺寸都非常微小,只有µm的等級,因此在定位、固定以及對準的精度要求都非常高,容許的誤差非常小,使得整個構裝製程面臨許多問題。這其中又以雷射光纖的構裝製程最為複雜,本文針對雷射光纖構裝中的光纖元件做深入研究,提出許多改善技術來確保收發模組的性能。

光纖元件的構裝主要可分為光纖-焊錫-套管元件的固定對準以及光纖的加工兩個部份。在光纖焊錫套管元件的構裝中,本文提出了定位與固定的技術來改善製程;在定位方面,透過兩階段控制法則的建立,讓光纖可以快速準確的定位於套管幾何中心,在0.25秒的時間內完成誤差1µm以內的定位動作,符合維持高耦光效率95%的要求。另外針對了光纖焊錫套管固定機制提出改善,將原本人工操作的方式,改由主動的焊錫注射方式,提高了焊錫固定的穩定性以及良率,可由原本的25%提升至83%。

在光纖頭端的加工上,本文針對光纖研磨製程,分析目前良率不佳的原因,搭配力量感測方式收集研磨資訊,提出研磨策略以得到良好研磨效果,實驗結果可將頭端的偏心誤差有效控制在1.5µm之內,確保研磨頭端的耦光效率。接著,為了組裝具高耦光效率的多段串接式光纖,在影像分析上利用干涉現象的資訊做為檢測依據,對串接光纖的熔接面做檢測,精確的找出熔接面,將精度提升至1µm,以利切割製程精度的改善。

以上構裝製程的改善,皆為了讓收發模組構裝後的耦光效率能夠提升或維持在理論上所設計出來的結果,將理論與實際的差距縮小,並且透過自動化的定位、感測等技術,將構裝的穩定性與重複性提高、有效縮短加工時間,提升整體良率產能,非常具實用性價值。
Abstract
Optical transceiver module plays an important role in the optical communication system. The packaging quality of the module decides the ability of the communication. Since the light signal is transferred from a laser diode to an optical fiber, the light transfer efficiency between these two components becomes a very important work to be done. The micrometer dimension and the ultra-high performance requirement of these components lead to many problems in module packaging process. Among all the problems, the packaging of the fiber components is the most complicated. In this research, many key technologies are proposed to solve or improve the problems in the packaging of the fiber components. Thus, the performance of the module can be ensured. Two main topics of the fiber component packaging will be introduced here, the fiber-solder-ferrule (FSF) packaging and the machining of the fiber.

In the packaging of the FSF, a positioning and a soldering technology are proposed to improve the packaging yield. For the positioning, a novel control strategy is constructed to shorten the positioning time and improve the positioning accuracy. Thus, the position of the fiber can be positioned at the center of the ferrule fast and precisely. The controller successfully completes the positioning command in 0.25sec with 1µm accuracy. And finally, the coupling efficiency can be hold. For the soldering of the FSF, an active soldering mechanism is developed to replace the passive manual operation. The mechanism successfully proofs the stability of the soldering and raises the yield from the 25% to 83%.

In machining of the fiber, a fiber end polishing issue and a fiber inspection topic are addressed. For the fiber end polishing, an online force sensing mechanism is implemented. The force sensing mechanism can control the polished fiber tip offset within 1.5µm. So the fiber coupling efficiency can be maintained. A control strategy is designed to solve the polishing problems and reach the polishing requirement. At last, an interference-based fiber inspection method is proposed to find the splicing plane between two spliced fibers. The accuracy of the fiber cleaving in a cascaded fiber fabrication improves from 10µm to 1µm by observing the fiber splicing plane precisely.

All the improvements of the above packaging technologies are proposed to raise or keep the performance of the transceiver module. So, the error between theories and experiments can be minimized. Meanwhile, a high stability and repeatability of the packaging can be achieved due to the automation of the positioning, force sensing, and inspection.
目次 Table of Contents
謝誌 i
目錄 ii
圖目錄 iv
表目錄 vii
符號說明 viii
中文摘要 1
英文摘要 3
第1章 緒論 5
1-1 光纖通訊簡介 5
1-2 光收發模組構裝 7
1-3 光纖元件構裝 10
1-4 研究目的 15
第2章 光纖套管構裝 19
2-1 精密定位:光纖偏心誤差的控制 19
2-1-1 光纖偏心誤差 19
2-1-2 光纖焊錫套管構裝製程 23
2-1-3 製程問題分析 25
2-1-4 微觀定位文獻回顧 27
2-1-5 運動系統描述 28
2-1-5-1 巨觀動態模式建立 29
2-1-5-2 微觀動態模型探討 34
2-1-6 控制器設計 36
2-1-6-1 巨觀階段控制器 37
2-1-6-2 微觀階段控制器 38
2-1-6-3 動態切換條件 42
2-1-7 實驗步驟與結果 45
2-1-8 結論 48
2-2 焊錫固定: 主動式焊錫注射技術 50
2-2-1 焊錫固定問題 50
2-2-2 毛細現象分析 53
2-2-3 主動式注射機構 55
2-2-4 焊錫注射機構設計 57
2-2-4-1 規格要求 57
2-2-4-2 焊錫注射機構設計 58
2-2-5 實驗步驟與結果 64
2-2-6 結論 68
第3章 高耦光效率光纖的製作 69
3-1 研磨加工:透鏡光纖頭端研磨 69
3-1-1 透鏡光纖耦光理論 69
3-1-2 橢圓透鏡光纖介紹 71
3-1-3 研磨製程描述與問題說明 74
3-1-3-1 四面錐形光纖頭端製程說明 74
3-1-3-2 研磨問題描述 75
3-1-4 光纖受力分析 78
3-1-5 機構設計 83
3-1-5-1 懸臂樑尺寸 85
3-1-5-2 懸臂樑材料 85
3-1-5-3 應變規挑選與測量原理 86
3-1-5-4 小結 91
3-1-6 研磨策略 93
3-1-6-1 磨盤接觸點偵測 93
3-1-6-2 研磨速度控制 94
3-1-6-3 研磨深度控制 95
3-1-7 實驗雜訊分析與結果 99
3-1-7-1 雜訊來源分析 100
3-1-7-2 研磨實驗 104
3-1-8 結論 112
3-2 檢測技術:多段串接光纖熔接面檢測 113
3-2-1 多段串接光纖 113
3-2-2 多段串接光纖製程 118
3-2-3 熔接面檢測策略 122
3-2-4 干涉現象模擬 127
3-2-5 實驗 132
3-2-6 結論 135
第4章 總結 137
參考文獻 140
作者簡介 146
著作清單 147
參考文獻 References
[1]. D.S. Alles, "Trends In Laser Packaging", 44th Proceedings of Electronic Components and Technology Conference, pp.185-192, Las Vegas, NV, 1990.
[2]. M.R. Matthews, B.M. Macdonald, and K.R. Preston, “Optical Components–The New Challenge in Packaging”, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, No. 4, pp.798-806, December 1990.
[3]. M.T. Sheen, “A Study on Residual Stresses and Creep Deformation in Laser Module Packaging”, Ph.D. Thesis, Department of Mechanical Engineering, National Sun Yat-Sen University, Taiwan, June, 2000.
[4]. R.P. Ratowsky, L. Yang, R.J. Deri, K.W. Chang, J.S. Kallman, and G. Trott, “Laser Diode to Single-Mode Fiber Ball Lens Coupling Efficiency: Full-Wave Calculation And Measurements”, Applied Optics, Vol. 36, No. 15, pp.3435-3438, 20 May 1997
[5]. A. Nicia, “Lens Coupling in Fiber-Optic Devices: Efficiency Limits”, Applied Optics, Vol. 20, No. 18, pp.3136-3145, September 1981.
[6]. C.A. Edwards, H.M. Presby, and C. Dragone, “Ideal Microlens for Laser to Fiber Coupling,” IEEE Journal of Lightwave Technology, Vol. 11, No. 2, pp.252-257, Feb. 1993.
[7]. Y. He and F.G. Shi, Member, IEEE, “Ideal Microlens Design for Flatting the Equiphase Distribution of a Gaussian Laser Beam“, IEEE Photonics Technology Letters, Vol. 16, No. 1, pp.114-116, January 2004
[8]. W.H. Cheng, M.T. Sheen, C.P. Chien, H.L. Chang, and K.J. Kuang, “Reduction of Fiber Alignment Shifts in Laser Module Packaging”, IEEE Journal of Lightwave Technology, Vol. 18, No. 6, pp.842-848, June 2000.
[9]. J.H. Kuang, M.T. Sheen, S.C. Wang, G.L. Wang, and W.H. Cheng, “Post-Weld-Shift in Dual-In-Line Laser Package”, IEEE Transactions on Advanced Packaging, Vol. 24, No. 1, pp.81-85, Feb. 2001.
[10]. J.H. Kuang, M.T. Sheen, S.C. Wang, C.H. Chen, and W.H. Cheng, “Crack Formation Mechanism in Laser-Welded Au-Coated Invar Materials for Semiconductor Laser Packaging”, IEEE Transactions on Component, Hybrids, Manufacturing Technology, Vol. 22, No. 1, pp.94-100, Feb, 1999.
[11]. C. Basaran and R. Chandaroy, “Finite Element Simulation of the Temperature Cycling Tests”, IEEE Transactions on Component, Hybrids, Manufacturing Technology, Vol. 20, No. 4, pp.530-536, , December, 1997.
[12]. P. Mueller, B. Valk, “Automated Fiber Attachment for 980nm Pump Modules,” 50th Proceedings of IEEE Electronic Components and Technology Conference, pp.5-9, May, 2000.
[13]. W.H. Cheng, M.T. Sheen, G.L. Wang, S.C. Wang and J.H. Kuang, “Fiber Alignment Shift Formation Mechanisms of Fiber-Solder-Ferrule Joints in Laser Module Packaging”, IEEE Journal of Lightwave Technology, Vol. 19, No. 8, pp.1177-1184, Aug, 2001.
[14]. K. Tamura, K. Ogata and P.N. Nikiforuk, “Design of Nonovershoot MRACS with Application to D.C. Servo motor System”, Transactions of the ASME Journal of Dynamics Systems, Measurement, and Control, Vol. 113, No. 1, pp.75-81, March, 1991.
[15]. S. Yang and M. Tomizuka, “Adaptive Pulse Width Control for Precise Positioning under the Influence of Stiction and Coulomb Friction”, Transactions of the ASME Journal of Dynamics Systems, Measurement, and Control, Vol. 110, No. 3, pp.221-227, Sep, 1988.
[16]. W.J. Yu, “Precision Position Control of Linear Brushless PM DC Motors”, Master Thesis, Department of Aeronautical & Astronautical Engineering, National Cheng Kung University, Taiwan, June, 1996.
[17]. H. Toshiro and Y. Tomomi, “Development of a New High Speed Positioning Servomechanism by Electromagnetic Attractive Force”, Seimitsu Kogaku Kaishi/ Journal of the Japan Society for Precision Engineering, Vol. 59, No. 3, pp.1619-1624, March, 1996.
[18]. K.C. Cheok, H. Hu, and N.K. Loh, “Modeling and Identification of a Class of Servomechanism Systems with Stick-Slip Friction”, Transactions of the ASME Journal of Dynamics, Measurement, and Control, Vol. 110, No. 3, pp.324-328, Sep, 1988.
[19]. P.E. Dupont, “The Effect of Coulomb Friction on the Existence and Uniqueness of the Forward Dynamic Problem”, Proceeding of the 1992 IEEE International Conference on Robotics and Automation, Vol. 2, pp.1442-1447 May, 1992.
[20]. P.I. Ro and P.I. Hubbel, “Model Reference Adaptive Control of Dual-Mode Micro/Macro Dynamics of Ball Screws for Nanometer Motion”, Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control, Vol. 115, No. 1, pp.103-108, Mar, 1993.
[21]. C. Hsieh and Y.C. Pan, “Dynamic Behavior and Modeling of the Pre-Sliding Static Friction”, Wear, Vol. 242, No. 1, pp.1-17, July, 2000.
[22]. S.J. Huang, “Effect of Friction on Precision Positioning System and its Control”, PhD Thesis, Department of Mechanical Engineering, National Taiwan University, June, 1996.
[23]. S.B. Chang, “Fast & Sub-micron Overshoot Positioning Technology on Precise Positioning System”, Instruments Today (Taiwan), Vol. 18, No. 2, pp.78-87, 1996.
[24]. J.G. Xin, “Automatic Parameter Identification System of Brush PM DC Motors”, Master Thesis, Department of Aeronautical and Astronautical Engineering, National Cheng Kung University, Taiwan, June, 1996
[25]. B. Armstrong-Helouvry, P. Dupont, and C. Canudas de Wit, “A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines with Friction”, Automatica, Vol. 30, No. 7, pp.1083-1138, 1994.
[26]. S. Futami, A. Furutani, and S. Yoshida, “Nanometer Positioning and Its Micro-dynamics”, Nanotechnology, Vol. 1, No. 1, pp.31-37, 1990.
[27]. Y.T. Tseng and Y.C. Chang, “Active Fiber-Solder-Ferrule Alignment Method for High-Performance Opto-Electronic Device Packaging”, IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 3, pp.541-547, Sep, 2003.
[28]. N. Eustathopoulos, M. G. Nicholas, and B. Drevet, “Wettability at High Temperatures”, Pergamon, Dec, 1999.
[29]. W.R. Hamburgen, “Precise robotic paste dot dispensing,” Electronic Components Conference, 1989. Proceedings 39th, , pp.593-602, 22-24 May 1989.
[30]. Y. Cao, M. Gao, E. Pinilla, “Fabrication and test of a filling station for micro/miniature devices,” Energy Conversion Engineering Conference, 1997. IECEC-97 Proceedings of the 32nd Intersociety , Vol.2, pp.1509-1513, 27 July-1 Aug. 1997.
[31]. W. Meyer, “Micro dispensing of adhesives and other polymers,” Polymers and Adhesives in Microelectronics and Photonics, 2001. First International IEEE Conference, pp.35-39, 21-24 Oct. 2001.
[32]. G. Vozzi, A. Ahluwalia, D. De Rossi, F. Giuntini, A. Mazzoldi, A. Sapienza, “Microsyringe based fabrication of high resolution organic structures for bioengineering applications”, Microtechnologies in Medicine and Biology, 1st Annual International, Conference, pp.141 -144, 2000, 12-14 Oct. 2000.
[33]. D.B. Wallace, “Method and Apparatus for Forming Microdrolets of Liquids at Elevated Temperatures,” U.S. Patent 5,415,679, May 16, 1995.
[34]. D.J. Hayes, M.E. Grove, “Development and application by ink-jet printing of advanced packaging materials,” Advanced Packaging Materials: Processes, Properties and Interfaces, 1999. Proceedings International Symposium, pp.88-93, 14-17 Mar 1999.
[35]. Q. Liu, M.C. Leu, M. Orme, “Amplitude modulated droplet formation in high precision solder droplet printing,” Advanced Packaging Materials: Processes, Properties and Interfaces, 2001. Proceedings. International Symposium, pp.123-128, 11-14 March 2001.
[36]. S.B. Fuller, E.J. Wilhelm, J.M. Jacobson, “Ink-jet printed nanoparticle microelectromechanical systems,” Journal of Microelectromechanical Systems, Vol.11, Issue1, pp.54-60, Feb. 2002.
[37]. J.E. Livas, S.R. Chinn, E.S. Kintzer, J.N. Walpole, C.A. Wang, and L.J. Missaggia, “High-power Erbium-doped Fiber Amplifier with 975 nm Tapered-gain-region Laser Pumps”, IEEE Electronic Letters, Vol. 30, No. 13, pp.1054-1055, June 1994.
[38]. S.Y. Huang, C.E. Gaebe, K.A. Miller, G.T. Wiand, and T. Stakelon, “High Coupling Optical Design for Laser Diodes with Large Aspect Ratio”, IEEE Transactions on Advance Packaging, Vol. 23, No. 2, pp.165-169, May 2000.
[39]. V.S. Shah, L. Curtis, R.S. Vodhanel, D.P. Bour and W.C. Yang “Efficient Power Coupling from a 980-nm, Broad-area Laser to a Single-Mode Fiber using a Wedge-Shaped Fiber Endface”, IEEE Journal of Lightwave Technology, Vol. 8, No. 9, pp.1313-1318, Sep, 1990.
[40]. R.A. Modavis and T.W. Webb, “Anamorphic Microlens for Laser Diode to Single-mode fiber Coupling”, IEEE Photonics Technology Letters, Vol. 7, No. 7, pp.798-800, July 1995.
[41]. H. Yoda and K. Shiraishi, “A New Scheme of a Lensed Fiber Employing a Wedge-Shaped Graded-Index Fiber Tip for the Coupling between High-Power Laser Diodes and Single-Mode Fibers”, IEEE Journal of Lightwave Technology, Vol. 19, No. 12, pp.1910-1917, Dec, 2001.
[42]. H. Yoda and K. Shiraishi, “Cascaded GI-Fiber Chips with a Wedge-Shaped End for the Coupling between an SMF and a High-Power LD with Large Astigmatism”, IEEE Journal of Lightwave Technology, Vol. 20, No. 8, pp.1545-1548, Aug, 2002.
[43]. J.S. Major, W.E. Plano, D.F. Welch, D. Scifres, “Single-mode InGaAs-GaAs Laser Diodes Operating at 980 nm”, IEEE Electronic Letters, Vol. 27, No. 6, pp.539-541, Mar. 1991.
[44]. S.M. Yeh, Y.K. Lu, S.Y. Huang, H.H. Lin, C.H. Hsieh, and W.H. Cheng, “A Novel Scheme of Lensed Fiber Employing a Quadrangular Pyramid Shaped Fiber Endface for Coupling between High-Power Laser Diodes and Single-Mode Fibers“, IEEE Journal of Lightwave Technology, Vol. 22, No. 5, pp.1374 -1379, May 2004.
[45]. H.M. Yang, S.Y. Huang, C.W. Lee, T.S. Lay, and W.H. Cheng “High-Coupling Tapered Hyperbolic Fiber Microlens and Taper Asymmetry Effect”, IEEE Journal of Lightwave Technology, Vol. 22, No. 5, pp.1395-1401, May 2004.
[46]. F. P. Beer and E. R., Johnston, JR., Mechanics of materials, McGraw-Hill Inc., 1992.
[47]. K. Shiraishi, H. Yoda, T. Endo, and I. Tomita, “A Lensed GIO Fiber with a Long Working Distance for the Coupling between Laser Diodes with Elliptical Fields and Single-mode Fibers”, IEEE Photonics Technology Letters, IEEE, Vol. 16, No. 4 , pp.1104-1106, April 2004.
[48]. H. Yoda, T. Endo, and K. Shiraishi, “Cascaded GI-fiber Chips with a Wedge-shaped End for the Coupling between an SMF and a High-power LD with Large Astigmatism”, IEEE Journal of Lightwave Technology, Vol. 20, No. 8, pp.1545-1548, Aug, 2002.
[49]. H. Yoda, K. Shiraishi, ”A New Scheme of a Lensed Fiber Employing a Wedge-shaped Graded-Index Fiber Tip for the Coupling between High-power Laser Diodes and Single-mode Fibers”, IEEE Journal of Lightwave Technology, Vol. 19, No. 12, pp. 1910-1917, Dec, 2001.
[50]. A. Ogura, S. Kuchiki, K. Shiraishi, K. Ohta, and I. Oishi, “Efficient Coupling between Laser Diodes with a Highly Elliptic Field and Single-mode Fibers by Means of GIO Fibers”, IEEE Photonics Technology Letters, vol. 13, Issue 11, pp. 1191-1193, Nov, 2001.
[51]. K. Shiraishi, S.I. Kuroo, “A New Lensed-fiber Configuration Employing Cascaded GI-fiber Chips”, IEEE Journal of Lightwave Technology, Vol. 18, No. 6, pp.787-794, June, 2000.
[52]. K. Shiraishi, H. Ohnuki, N. Hiraguri, K. Matsumura, I. Ohishi, H. Morichi, and H. Kazami, ”A Lensed-fiber Coupling Scheme Utilizing a Graded-index Fiber and a Hemispherically Ended Coreless Fiber Tip”, IEEE Journal of Lightwave Technology, Vol. 15, No. 2, pp.356-363, Feb, 1997.
[53]. M. Ohashi, K. Kitayama, S. Seikai, ”Mode Coupling at Arc-fusion Splices in Graded-Index Fibers”, IEEE Journal of Quantum Electronics, Vol. 18, No. 2, pp.274-277, Feb, 1982.
[54]. H. Tadashi, M. Michito, T. Tadatoshi, and T. Masamitsu, “Monitoring Method for Axis Alignment of Single-mode Optical Fiber and Splice-loss Estimation”, Optics Letters, Vol. 8, No. 4, pp.235-237, April, 1983.
[55]. T. Katagiri, M. Tachikura, and I. Sankawa, “Optical Microscope Observation Method of a Single-Mode Optical-Fiber Core for Precise Core-Axis Alignment’, IEEE Journal of Lightwave Technology, Vol. LT-2, No. 3, pp.277-283, June, 1984.
[56]. A.A. Hamza, M.A. Mabrouk, W.A. Ramadan, and H.H. Wahba, “Core-index Determination o a Thick Fibre using Lens-Fibre Interference (LFI) Technique”, Optics and Lasers in Engineering, Vol. 42, No. 2, pp.121-130, Aug, 2004.
[57]. A. Abdel-Hady, H. El Ghandoor, I. Nasser, and A. Al-Shukri, “A Comparative Study of Spliced Optical Fibers”, Optics and Lasers in Engineering, Vol. 41,No. 2, pp.277-287, Feb, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code