Responsive image
博碩士論文 etd-0626108-020008 詳細資訊
Title page for etd-0626108-020008
論文名稱
Title
以電化學法沉積氧化鋅之特性研究
Characterizations of Electrochemically Synthesized Zinc Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
169
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-06
繳交日期
Date of Submission
2008-06-26
關鍵字
Keywords
蝕刻、多孔矽、氧化鋅、電化學沉積、電激發光、鉑、光催化
ZnO, Porous Silicon, Pt, Au, Nano, Zn-ZnO, Electrodeposition, Etching, Electroluminescence, Photocatalysis
統計
Statistics
本論文已被瀏覽 5960 次,被下載 4339
The thesis/dissertation has been browsed 5960 times, has been downloaded 4339 times.
中文摘要
氧化鋅,由於其高exiton binding energy (60 meV)及寬能帶(~3.4 eV)之特性,使其具有在室溫下發紫外光之能力。而其易於成長的特性,及可於多數酸及鹼性溶液下蝕刻的特性,也使其易於應用於製造奈米元件。電化學沉積(Electrodeposition)是一種可在低溫下直接成長高品質薄膜的方法,改變電解液及其濃度,沉積溫度,電流密度亦改變生長晶體之形狀及其它特性。在本論文中,先使用電化學方法將ZnO成長於n型Si基板上,利用不同的溫度,電解液濃度及電流密度研究其特性,發現於不同成長溫度下之樣品於X光繞射儀量測下會有不同的材料沉積在基板上。成長之薄膜具有原來之電解液硝酸鋅,金屬鋅,及氧化鋅之結構。在沉積出只具有氧化鋅結構的薄膜後,利用巨觀之光激光譜儀檢視其發光現象,幾乎沒有發現紫外光,經過熱處理於不同溫度及氣體下,情況依舊未見改善。文獻上,熱處理成長金屬鋅或離子佈植鋅於氧化材料中,可得到非常理想之紫外光強度,因此,利用電化學沉積方法加上適當的電流密度可於30度下成長金屬鋅-氧化鋅結構的特性,將其做熱處理,於光激光量測下可發現強度非常強之紫外光。本論文發現由金屬鋅所氧化而成之氧化鋅可發出強烈之紫外光,此一方法不僅可以快速製造出可放出紫外光之氧化鋅,也提供了一個電化學沉積之氧化鋅發光不足及無法發出紫外光的解決方法。此外,由文獻記載,金屬鋅氧化而成之氧化鋅發出的紫外光波長會隨著加熱之溫度而變化,以往文獻中皆記載是由量子侷限效應所致,由於氧化鋅大小並不在量子侷限效應之範圍中,在此,提供了此波長位移是由鋅的大小所影響之論點。傳統上,電化學沉積ZnO不易直接沉積於p型基板上,在此,以鍍鋁於p型Si基板之背電極上,可以較小電位及調整不同電流密度成長出不同形狀及品質之氧化鋅。近年來,由於金屬在奈米化時有不同之特殊性質,因此可應用在多項領域中。在此,使用電化學方法成長金及鉑之奈米顆粒增加氧化鋅之光催化能力。首先,將奈米金與鉑顆粒使用電化學沉積並觀察其特性,比較電化學沉積金與鉑,發現金比較會以顆粒而鉑會以聚合的形式生長。接著將金之奈米顆粒成長於氧化鋅藉以提高光催化能力,此種方法不僅快速亦可達到改善的效果。而由於電化學沉積之氧化鋅於膜較厚的情況下會以多孔的結構為主,因此在此將金與鉑之電解液個別加入硝酸鋅中一起成長,可觀察到金-氧化鋅及鉑-氧化鋅的結構,此結構可証明金, 鉑及氧化鋅可個別成長而其多孔的性質更可增加光催化的面積而使光催化能力提高。
雖然矽是最主要的半導體材料,但其能帶結構屬於間接型能帶,因此,無法應用於光電元件上,然而,直至1990年,發現發光能量位於可見光範圍可由電化學蝕刻之多孔矽產生,而其發光機制目前並不清楚,但可分為兩種型式:量子侷限效應及表面能態。雖然可以發出高效率之可見光,但波長易受外在環境所影響而位移,在此論文中使用蝕刻前浸泡化學溶液,蝕刻時加入化學溶液及蝕刻後浸泡化學溶液來鈍化多孔矽,使其不易受環境影響。
Abstract
Zinc oxide (ZnO) has higher exiton binding energy (60 meV) and high band gap (~3.4 eV) that can provide efficient ultraviolet (UV) light at room temperature (RT). The easily etched in acids and alkalis that provides the fabrication of small-size ZnO-based devices. Electrodeposition is the growth method that can deposit high quality film and modify the characterizations of film by changing its deposition electrolyte concentration, temperature, and current density.
Firstly, the ZnO is deposited on n-type Si substrate by electrodeposition by different deposited temperature, electrolyte concentration, and current density. The deposited films contain zinc nitrate, metal Zn, and ZnO while electrodeposited at various deposition parameters. For the deposited film contains only ZnO, no UV light is found measured by macroscopic photoluminescent analysis even annealed at different ambient and temperature. According to previous papers, an ideal UV light intensity can be obtained by thermal treated metal Zn or Zn ion implantation into oxide materials after annealing. Annealing the Zn-ZnO structure formed in 30oC by electrodeposition can observe intense UV light. This method improves the disadvantages of insufficient light intensity and no UV light observation from conventionally electrodeposited ZnO. The variation of UV light wavelength of ZnO oxidized from metal Zn is associated with the quantum-confinement effect that was discussed by previous papers. It is found that the size of ZnO is not small enough to realize the quantum-confinement effect, herein, we suggest that the variation of UV light wavelength is affected by the metal Zn resides in ZnO. Otherwise, the electrodeposition of ZnO is not easily performed on p-type substrate, an aluminum film on the back side of p-type Si can deposit ZnO by smaller potential, and different ZnO nanostructures are obtained by modifying the current density. Recently, different characteristics were found in nano-size noble metal crystals. In this thesis, the porous structure of Au-ZnO and Pt-ZnO were co-deposited by electrodeposition to enhance the photocatalytic activity.
Si is the dominant material in semiconductor technology, but its indirect band gap property makes it not allowed in optoelectronics application. However, since 1990, the visible light is observed from porous Si fabricated by electrochemically etching of Si; though the light mechanism of porous Si is not clear, it can be divided into two parts, the quantum-confinement effect of Si nanocrystals and surface states on porous Si. Porous Si emits efficient visible light, but its light wavelength is readily influence by environment. We developed three methods, electrochemically etching the pre-treated Si substrate, adding chemical solution into electrolyte during etching process, and post-treatment of Si substrate after etching to prevent the emission of porous Si from being affected by environment.
目次 Table of Contents
Acknowledgment I
中文摘要 II
Abstract III
Contents V

Chapter 1
Introduction and Outline 1
1-1 Nanomaterials, Nanosciences, and Nanotechnologies 1
1-2 Zinc Oxide 2
1-3 Properties and Applications of ZnO 3
1-4 Outlines 7

Chapter 2
Electrodeposited ZnO Films 14
2-1 Introduction 14
2-2 Electrodeposited ZnO on N-type Si without Buffer Layer 16
2-2-1 Experiment 17
2-2-2 Electrodeposited Mechanism of ZnO Discussed by XRD Results 17
2-2-3 PL Analysis of Electrodeposited ZnO 19
2-3 Electrodeposited ZnO on P-type Si and Their
Nanostructural Microphotoluminescence 21
2-3-1 Electrodeposition of ZnO on P-type Si 22
2-3-2 Structure and Morphology of Electrodeposited ZnO 24
2-3-3 Microphotoluminescence of Electrodeposited ZnO 26
2-4 Summary 32

Chapter 3
Photoemission of Electrodeposited ZnO Improved by Thermal Treatment 51
3-1 Introduction 51
3-2 Electrodeposited ZnO with Postannealing Process 53
3-2-1 The Electrodeposited ZnO Annealed in Different Ambient (O2, N2, N2O) at Different Temperatures 53
3-2-2 PL Spectra of the Electrodeposited Zn-ZnO Annealed in O2 at Different Temperatures 54
3-2-3 The Electrodeposited Zn-ZnO Annealed in Different Ambient (O2, N2, N2O) at 500 oC 58
3-3 Ultraviolet Emission Blueshift of ZnO Related to Zn 59
3-4 Summary 63

Chapter 4
Applications of Electrodeposited ZnO (Photocatalytic and Electroluminescent Devices) 85
4-1 Introduction 85
4-2 Photocatalytic Activity of ZnO 85
4-2-1 Photocatalysis and ZnO Photocatalyst: A Brief Review 85
4-2-2 Photocatalytic Activity of Electrodeposited ZnO 88
4-2-3 One-step Preparation of Metal-Semiconductor Structure to Enhance Photocatalytic Activity 92
4-3 Electroluminescent Devices of ZnO/Si 97

Appendix
Passivation of Porous Silicon by Pre-treatment, In-situ Treatment, and Post-treatment 122
Vita 157
Publication List 158
參考文獻 References
Chapter 1
[1]J. Bath and A. J. Turberfield, “DNA nanomachines,” Nature Nanotechnology, vol. 2, no. 5, pp. 275-284, 2007.
[2]A. J. Shields, “Semiconductor quantum light sources,” Nature Photonics, vol. 1, no. 4, pp. 215-223, 2007.
[3]L. J. Guo, “Nanoimprint lithography: Methods and material requirements,” Adv. Mater., vol. 19, no. 4, pp. 495-513, 2007.
[4]J. M. Klostranec and W. C. W. Chan, “Quantum dots in biological and biomedical research: Recent progress and present challenges,” Adv. Mater., vol. 18, no. 15, pp. 1953-1964, 2006.
[5]Y. Shirai, J. Morin, T. Sasaki, J. M. Guerrero, and J. M. Tour, “Recent progress on nanovehicles,” Chem. Soc. Rev., vol. 35, no. 11, pp. 1043-4055, 2006.
[6]D. Vanmackelbergh and P. Liljeroth, “Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals,” Chem. Soc. Rev., vol. 34, no. 4, pp. 299-312, 2005.
[7]H. Chander, “Development of nanophosphors-A review,” Mater. Sci. Eng. R, vol. 49, no. 5, pp. 113-155, 2005.
[8]X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Le, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” Science, vol. 307, pp. 538-544, 2005.
[9]A. A. G. Requicha, “Nanorobots, NEMS, and Nanoassembly,” Proc. IEEE, vol. 91, no. 11, pp. 1922-1933, 2003.
[10]G. Hodes, “When small is different: Some recent advances in concepts and applications of nanoscale phenomena,” Adv. Mater., vol. 19, pp. 639-655, 2007.
[11]C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev., vol. 105, no. 4, pp. 1025-1102, 2005.
[12]E. Roduner, “Size matters: Why nanomaterials are different,” Chem. Soc. Rev., vol. 35, no. 7, pp. 583-592, 2006.
[13]R. Tenne, “Inorganic nanotubes and fullerene-like nanoparticles,” Nature Nanotechnology, vol. 1, no. 2, pp. 103-111, 2006.
[14]A. San-Miguel, “Nanomaterials under high-pressure,” Chem. Soc. Rev., vol. 35, pp. 876-889, 2006.
[15]D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys., vol. 93, no. 2, pp. 793-818, 2003.
[16]J.-C. Charlier, X. Blase, S. Roche, ”Electronic and transport properties of nanotubes,” Rev. Mod. Phys., vol. 79, no. 2, pp. 677-732, 2007.
[17]M. A. Meyers, A. Mishra, D. J. Benson, “Mechanical properties of nanocrystalline materials,” Pro. Mater. Sci., vol. 51, pp. 427-556, 2006.
[18]G. D. Scholes and G. Rumbles, “Excitons in nanoscale systems,” Nature Mater., vol. 5, no. 9, pp. 683-696, 2006.
[19]S. J. L. billing and I. Levin, “The problem with determining atomic structure at the nanoscale,” Science, vol. 316, pp. 561-565, 2007.
[20]A. Nel, T. Xia, L. Mädler, and N. Li, “Toxic potential of materials at the nanolevel,” Science, vol. 311, pp. 622-627, 2006.
[21]A. J. Mieszawska, R. Jalilian, G. U. Sumanasekera, and F. P. Zamborini, “The synthesis and fabrication of one-dimensional nanoscale heterojunctions,” Small, vol. 3, no. 5, pp. 722-756, 2007.
[22]A. Hullmann, “Who is winning the global nanorace?” Nature Nanotechnology, vol. 1, no. 2, pp. 81-83, 2006.
[23]A. B. Djurišic and Y. H. Leung, “Optical properties of ZnO nanostructures,” Small, vol. 2, no. 8-9, pp. 944-961, 2006.
[24]J. W. Elam and S. M. George, “Growth of ZnO/Al2O3 alloy films using atomic layer deposition techniques,” Chem. Mater., vol. 15, no. 4, pp. 1020-1028, 2003.
[25]B. Liu and H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” J. Am. Chem. Soc., vol. 125, no. 15, pp. 4430-4431, 2003.
[26]J. H. Ki, D. Andeen, and F. E. Lange, “Hydrothermal growth of periodic, single-crystal ZnO microrods and microtunnels,” Adv. Mater., vol. 18, no. 18, pp. 2453-2457, 2006.
[27]H. Usui, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Photoluminescence of ZnO nanoparticles prepared by laser ablation in different surfactant solutions,” J. Phys. Chem. B, vol. 109, no. 1, pp. 120-124, 2005.
[28]L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater., vol. 15, no. 5, pp. 464-466, 2003.
[29]M. Sano, K. Miyamoto, H. Kato, and T. Yao, “Role of hydrogen in molecular beam epitaxy of ZnO,” J. Appl. Phys., vol. 95, no. 10, pp. 5527-5531, 2004.
[30]S.-W. Kim, S. Fujita, and S. Fujita, “ZnO nanowires with high aspect ratios grown by metalorganic chemical vapor deposition using gold nanoparticles,” Appl. Phys. Lett., vol. 86, no. 15, pp. 153119, 2005
[31]L. Vayssieres, K. Keis, S.-E. Lindquist, A. Hagfeldt, “Purpose-Built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO,” J. Phys. Chem. B., vol. 105, no. 17, pp. 3350-3352, 2001.
[32]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science, vol. 292, no. 5523, pp. 1897-1899, 2001.
[33]Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science, vol. 291, no. 5510, pp. 1947-1949, 2001.
[34]F. Li, Y. Ding, P. Gao, X. Xin, and Z. L. Wang, “Single-crystal hexagonal disks and rings of ZnO: Low-temperature, large-scale synthesis and growth mechanism,” Angew. Chem. Int. Ed., vol. 43, pp. 5238-5242, 2004.
[35]K. C. Hui, J. An, X. Y. Zhang, J. B. Xu, J. Y. Dai, and H. C. Ong, “Electron beam induced light emission and charge conduction patterning in ZnO by using an AlOx layer,” Adv. Mater., vol. 17, pp. 1960-1964, 2005.
[36]Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys., vol. 98, no. 4, pp. 041301, 2005.
[37]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent advances in processing of ZnO,” J. Vac. Sci. Technol. B, vol. 22, no. 3, pp. 932-948, 2004.
[38]Z. L. Wang, “Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing,” Appl. Phys. A, vol. 88, pp. 7-15, 2007.
[39]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO,” Pro. Mater. Sci., vol. 50, pp. 293-340, 2005.
[40]Y. W. Heo, D. P. Norton, L. C. Tien, Y. Kwon, B. S. Kang, F. Ren, S. J. Pearton, and J. R. LaRoche, “ZnO nanowire growth and devices,” Mater. Sci. Eng. R, vol. 47, no. 1-2, pp. 1-47, 2004.
[41]A. Ashrafi and C. Jagadish, “Review of zincblende ZnO: Stability of metastable ZnO phases,” J. Appl. Phys., vol. 102, no. 7, pp. 071101, 2007.
[42]J. Zhou, N. Xu, and Z. L. Wang, “Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures,” Adv. Mater., vol. 18, no. 18, pp. 2432-2435, 2006.
[43]A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, Z. L. Dong, and W. Huang, “Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition,” Appl. Phys. Lett., vol. 89, no. 12, pp. 123902, 2006.
[44]L. Nie, L. Gao, P. Feng, J. Zhang, X. Fu, Y. Liu, X. Yan, and T. Wang, “Three-dimensional functionalized tetrapod-like ZnO nanostructures for plasmid DNA delivery,” Small, vol. 2, no. 5, pp. 621-625, 2006.
[45]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, “Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,” Nature Mater., vol. 4, no. 1, pp. 42-46, 2005.
[46]M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee, and J.-M. Myoung, “ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes,” Small, vol. 3, no. 4, pp. 568-572, 2007.
[48]J. Bao, M. A. Zimmer, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett., vol. 6, no. 8, pp. 1719-1722, 2006.
[49]R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys. Lett., vol. 85, no. 24, pp. 6004-6006, 2004.
[50]L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, r. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, “Self-aligned, gated arrays of individual nanotube and nanowire emitters,” Nano Lett., vol. 4, no. 9, pp. 1575-1579, 2004.
[51]W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton, and Z. Ren, “Aligned ultralong ZnO nanobelts and their enhanced field emission,” Adv. Mater., vol. 18, no. 24, pp. 3275-3278, 2006.
[52]S. H. Jo, J. Y. Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini, and J. T. Fourkas, “Field-emission studies on thin films of zinc oxide nanowires,” Appl. Phys. Lett., vol. 83, no. 23, pp. 4821-4823, 2003.
[53]H. K. Yadav, K. Sreenivas, and V. Gupta, “Enhanced response from metal/ZnO bilayer ultraviolet photodetector,” Appl. Phys. Lett., vol. 90, no. 17, pp. 172113, 2007.
[54]R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl. Phys. Lett., vol. 90, no. 24, pp. 243106, 2007.
[55]B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737-740, 1991.
[56]S. Pang, T. Xie, Y. Zhang, X. Wei, M. Yang, D. Wang, and Z. Du, “Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells,” J. Phys. Chem. C, vol. 111, no. 49, pp. 18417-18422, 2007.
[57]S. H. Kang, J.-Y. Kim, Y. Kim, H. S. Kim, and Y.-E. Sung, “Surface modification of stretched TiO2 nanotubes for solid state dye-sensitized solar cells,” J. Phys. Chem. C, vol. 111, no. 26, pp. 9614-9623, 2007.
[58]A. de S. Gonçalves, M. R. Davolos, N. Masaki, S. Yanagida, A. Morandeira, J. R. Durrant, J. N. Freitas, and A. F. Nogueira, “Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized cells,” Dalton Trans., vol. 2008, pp. 1487-1491, 2008.
[59]T. P. Chou, Q. Zhang, G. E. Fryxell, and G. Cao, “Hierarchically structured ZnO film for dye-sensitized solar cells with enhanced energy conversion efficiency,” Adv. Mater., vol. 19, pp. 2588-2592, 2007.
[60]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nature Mater., vol. 4, no. 6, pp. 455-459, 2005.
[61]A. B. F Martinson, J. W. Elam, J. t. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Lett., vol. 7, no. 8, pp. 2183-2187, 2007.
[62]S. Seki, Y. Sawaka, and T. Nishide, ”Indium-tin-oxide thin films prepared by dip-coating of indium diacetate monohydroxide and tin dichloride,” Thin Solid Films, vol. 388, no. 1-2, pp. 22-26, 2001.
[63]J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. J. Marks, “Indium tin oxide alternatives – high work function transparent conducting oxides as anodes for organic light-emitting diodes,” Adv. Mater., vol. 13, no. 19, pp. 1476-1480, 2001.
[64]J. Owen, M. S. Son, K.-H. Yoo, B. D. Ahn, and S. Y. Lee, “Organic photovoltaic devices with Ga-doped ZnO electrode,” Appl. Phys. Lett., vol. 90, no. 3, pp. 033512, 2007.
[65]B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y. Hwang, and D.-S. Seo, “Transparent conductive Al-dped ZnO films for liquid crystal displays,” J. Appl. Phys., vol. 99, no. 12, pp. 124505, 2006.
[66]S. Kandasamy, W. Wlodarski, A. Holland, S. Nakagomi, and Y. Kokubun, ”Electrical characterization and hydrogen gas sensing properties of a n-ZnO/p-SiC Pt-gate metal semiconductor field effect transistor,” Appl. Phys. Lett., vol. 90, no. 6, pp. 064103, 2007.
[67]L. C. Tien, P. W. Sadik, D. P. Norton, L. F. Voss, S. J. Pearton, H. T. Wang, B. S. Kang, F. Ren, J. Jun, and J. Lin, ”Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods,” Appl. Phys. Lett., vol. 87, no. 22, pp. 222106, 2005.
[68]S. K. Hazra and S. Basu, ”Hydrogen sensitivity of ZnO p-n homojunctions,” Sens. Actuators B, vol. 117, no. 1, pp. 177-182, 2006.
[69]G. Socol, E. Axente, C. Ristoscu, F. Sima, A. Popescu, N. Stefan, I. N. Mihailescu, L. Escoubas, J. Ferreira, S. Bakalova, and A. Szekeres, ”Enhanced gas sensing of Au nanocluster-doped or –coated zinc oxide thin films,” J. Appl. Phys., vol. 102, no. 8, pp. 083103, 2007.
[70]Z. Fan and J. G. Lu, ”Gate-refreshable nanowire chemical sensors,” Appl. Phys. Lett., vol. 86, no. 12, pp. 123510, 2005.
[71]S. C. Navale, V. Ravi, I. S. Mulla, S. W. Gosavi, and S. K. Kulkarni, ”Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO,” Sens. Actuators B, vol. 126, no. 2, pp. 382-386, 2007.
[72]L. Liao, H. B. Lu, J. C. Li, H. He, D. F. Wang, D. J. Fu, C. Liu, and W. F. Zhang, ”Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C, vol. 111, no. 5, pp. 1900-1903, 2007.
[73]P. Bhattacharyya, P. K. Basu, C. Lang, H. Saha, and S. Basu, ”Noble meal catalytic contacts to sol-gel nanocrystalline zinc oxide thin films for sensing methane,” Sens. Actuators B, vol. 129, no. 2, pp. 551-557, 2008.
[74]Y. Qiu and S. Yang, ”ZnO nanotetrapods: Controlled vapor-phase synthesis and application for humidity sensing,” Adv. Funct. Mater., vol. 17, no. 8, pp. 1345-1352, 2007.
[75]P. D. Batista and M. Mulato, ”ZnO extended-gate field-effect transistors as pH sensors,” Appl. Phys. Lett., vol. 87, no. 14, pp. 143508, 2005.
[76]S. M. Al-Hilli, M. Willander, A. Öst, and P. Strålfors, ”ZnO nanorods as an intracellular sensor for pH measurements,” J. Appl. Phys., vol. 102, no. 8, pp. 084304, 2007.
[77]G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, ”Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B, vol. 124, no. 1, pp. 187-191, 2007.
[78]H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, ”Nano-crystalline Cu-doped ZnO thin film gas sensor for CO,” Sens. Actuators B, vol. 115, no. 1, pp. 247-251, 2006.
[79]F. Ding, Z. Fu, and Q. Qin, “Electrochromic properties of ZnO thin films prepared by pulsed laser deposition,” Electrochem. Solid-State Lett., vol. 2, no. 8, pp. 418-419, 1999.
[80]J. Zhong, H. Chen, G. Saraf, Y. Lua, C. K. Choi, J. J. Song, D. M. Machie, and H. Shen, “Integrated ZnO nanotips on GaN light emitting diodes for enhanced emission efficiency,” Appl. Phys. Lett., vol. 90, no. 20, pp. 203515, 2007.
[81]S. J. An, J. H. Chae, G.-C. Yi, and G. H. Park, “Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays,” Appl. Phys. Lett., vol. 92, no. 12, pp. 121108, 2008.
[82]J. Qiu, W. Yu, X. Gao, and X. Li, “Fabrication and characterization of TiO2 nanotube arrays having nanopores in their walls by double-template-assisted sol-gel,” Nanotechnology, vol. 18, no. 29, pp. 295604, 2007.
[83]Y. Yang, X. W. Sun, B. K. Tay, J. X. Wang, Z. L. Dong, H. M. Fan, “Twinned Zn2TiO4 spinel nanowires using ZnO nanowires as template,” Adv. Mater., vol. 19, no. 14, pp. 1839-1844, 2007.
[84]M. Li, J. Zhai, H. Liu, Y. Song, L. Jiang, and D. Zhu, “Electrochemical deposition of conductive superhydrophobic zinc oxide thin films,” J. Phys. Chem. B, vol. 107, no. 37, pp. 9954-9957, 2003.
hydrophobic[k,l]
[85]X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films,” J. Am. Chem. Soc., vol. 126, no. 1, pp. 62-63, 2004.
[86]X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science, vol. 316, no. 5821, pp. 102-105, 2007.
[87]Y. Qin, X. Wang, and Z. L. Wang, “Microfibre-nanowire hybrid structure for energy scavenging,” Nature, vol. 451, pp. 809-814, 2008.
Chapter 2
[1]http://www.electro.patent-invent.com/electricity/inventions/
[2]J. A. Switzer, ”The n-Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell,” J. Electrochem. Soc., vol. 133, no. 4, pp. 722-728, 1986.
[3]L. Gal-Or, I. Silberman, and R. Chaim, ”Electrolytic ZrO2 coatings I. Electrochemical aspects,” J. Electrochem. Soc., vol. 138, no. 7, pp. 1939-1942, 1991.
[4]R. Chaim, I. Silberman, and L. Gal-Or, ”Electrolytic ZrO2 coatings II. Microstructural aspects,” J. Electrochem. Soc., vol. 138, no. 7, pp. 1942-1946, 1991.
[5]M. Izaki and T. Omi, “Transparent zinc oxide films prepared by electrochemical reaction,” Appl. Phys. Lett., vol. 68, no. 17, pp. 2439-2440, 1996.
[6]S. Peulon and D. Lincot, “Cathodic electrodeposition from aqueous solution of dense or open structured zinc oxide films,” Adv. Mater., vol. 8, no. 2, pp. 166-170, 1996.
[7]J. Lee and Y. Tak, “Electrodeposition of ZnO on ITO electrode by potential modulation method,” Electrochem. Solid-State Lett., vol. 4, no. 9, pp. C63-C65, 2001.
[8]Z. H. Gu and T. Z. Fahidy, “Electrochemical deposition of ZnO thin films on tin-coated glasses,” J. Electrochem. Soc., vol. 146, no. 1, pp. 156-159, 1999.
[9]M. Izaki, “Preparation of transparent and conductive zinc oxide films by optimization of the two-step electrolysis technique,” J. Electrochem. Soc., vol. 146, no. 12, pp. 4517-4521, 1999.
[10]J.-G. Wang, M.-L. Tian, N. Kumar, and Th. E. Mallouk, “Controllable template synthesis of superconducting Zn nanowires with different microstructures by electrochemical deposition,” Nano Lett., vol. 5, no. 7, pp. 1247-1253, 2005.
[11]B. Cao, F. Sun, and W. Cai, “Electrodeposition-induced highly oriented zinc oxide ordered pore arrays and their ultraviolet emissions,” Electrochem. Solid-State Lett., vol. 8, no. 9, pp. G237-G240, 2005.
[12]M. Izaki and T. Omi, “Characterization of transparent zinc oxide films prepared by electrochemical reaction,” J. Electrochem. Soc., vol. 144, no. 6, pp. 1949-1954, 1997.
[13]B. Cao, W. Cai, H. Zeng, and G. Duan, “Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates,” J. Appl. Phys., vol. 99, pp. 073516, 2006.
[14]B. Cao, X. Teng, S. H. Heo, Y. Li, S. O. Cho, G. Li, and W. Cai, “Different ZnO nanostructures fabricated by a seed-layer assisted electrochemical route and their photoluminescence and field emission properties,” J. Phys. Chem. C, vol. 111, no. 6, pp. 2470-2476, 2007.
[15]M. Izaki, T. Shinagawa, K.-T. Mizuno, Y. Ida, M. Inaba and A. Tasaka, “Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device,” J. Phys. D: Appl. Phys., vol. 40, pp. 3326-3329, 2007.
[16]G.-R. Li, D.-L. Qu, W.-X. Zhao, and Y.-X. Tong, “Electrochemical deposition of (Mn,Co)-codoped ZnO nanorod arrays without any template,” Electrochem. Commun., vol. 9, pp. 1661-1666, 2007.
[17]S. Otani, J. Katayama, H. Umemoto, and M. Matsuoka, “Effect of bath temperature on the electrodeposition mechanism of zinc oxide film from zinc nitrate solution,” J. Electrochem. Soc., vol. 153, no. 8, pp. C551-C556, 2006.
[18]S. Peulon and D. Lincot, “Mechanistic study of cathodic electrodeposition of zinc oxide and zinc hydroxychloride films from oxygenated aqueous zinc chloride solutions,” J. Electrochem. Soc., vol. 145, no. 3, pp. 864-874, 1998.
[19]M. Izaki and T. Omi, “Electrolyte optimization for cathodic growth of zinc oxide films,” J. Electrochem. Soc., vol. 143, no. 3, pp. L53-L55, 1996.
[20]L. Xu, Y. Guo, Q. Liao, J. Zhang, and D. Xu, “Morphological control of ZnO nanostructures by electrodeposition,” J. Phys. Chem. B, vol. 109, no. 28, pp. 13519-13522, 2005.
[21]Y. Tan, E. M. P. Steinmiller, and K.-S. Choi, “Electrochemical tailoring of lamellar-structured ZnO films by interfacial surfactant templating,” Langmuir, vol. 21, no. 21, pp. 9618-9624, 2005.
[22]C. Boeckler, T. Oekermann, A. Feldhoff, and M. Wark, “Role of the critical micelle concentration in the electrochemical deposition of nanostructured ZnO films under utilization of amphiphilic molecules,” Langmuir, vol. 22, no. 22, pp. 9427-9439, 2006.
[23]Th. Pauporté, Ts. Yoshida, D. Komatsu, and H. Minoura, “Highly porous electrodeposited zinc oxide films functionalized for red/green luminescence,” Electrochem. Solid-State Lett., vol. 9, no. 2, pp. H16-H18, 2006.
[24]G.-R. Li, X.-H. Lu, D.-L. Qu, C.-Zh. Yao, F.-L Zheng, Q. Bu, C.-R. Dawa, and Y.-X. Tong, “Electrochemical growth and control of ZnO dendritic structures,” J. Phys. Chem. C, vol. 111, no. 18, pp. 6678-6683, 2007.
[25]Zh. Chen, Y. Tang, L. Zhang, and L. Luo, “Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells,” Electrociem. Acta, vol. 51, pp. 5870-5875, 2006.
[26]S.-J. Lee, S. K. Park, C. R. Park, J. Y. Lee, J. Park, and Y. R. Do, “Spatially separated ZnO nanopillar arrays on Pt/Si substrates prepared by electrochemical deposition,” J. Phys. Chem. C, vol. 111, no. 32, pp. 11793-11801, 2007.
[27]H. Luo, J. Zhang, and Y. Yan, “Electrochemical deposition of mesoporous crystalline oxide semiconductor films from lyotropic liquid crystalline phases,” Chem. Mater., vol. 15, no. 20, pp. 3769-3773, 2003.
[28]F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, J. Li, Q. Li, Y. Wang, T. Wang, and B. Zou, “The optical properties of ZnO sheets electrodeposited on ITO glass,” Mater. Lett., vol. 61, pp. 2000-2003, 2007.
[29]S. Ph. Anthony, J. I. Lee, and J. K. Kim, “Tuning optical band gap of vertically aligned ZnO nanowire arrays grown by homoepitaxial electrodeposition,” Appl. Phys. Lett., vol. 90, pp. 103107, 2007.
[30]Q.-P. Chen, M.-Zh. Xue, Q.-R. Sheng, Y.-G. Liu, and Z.-F. Ma, “Electrochemical growth of nanopillar zinc oxide films by applying a low concentration of zinc nitrate precursor,” Electrochem. Solid-State Lett., vol. 9, no. 3, pp. C58-C61, 2006.
[31]Th. Pauporté and D. Lincot, “Hydrogen peroxide oxygen precursor for zinc oxide electrodeposition,” J. Electrochem. Soc., vol. 148, no. 4, pp. C310-C314, 2001.
[32]R. Könenkamp, K. Boedecker, M. C. Lux-Steiner, M. Poschenrieder, F. Zenia and C. Levy-Clement, “Thin film semiconductor deposition on free-standing ZnO columns,” Appl. Phys. Lett., vol. 77, no. 16, pp. 2575-2577, 2000.
[33]Y. Tang a, L. Luo, Zh. Chen, Y. Jiang, B. Li, Zh. Jia, and L. Xu, “Electrodeposition of ZnO nanotube arrays on TCO glass substrates,” Electrochem. Commun., vol. 9, pp. 289-292, 2007.
[35]B. H. Juárez, C. López, and Concepción Alonso, “Formation of zinc inverted opals on indium tin oxide and silicon substrates by electrochemical deposition,” J. Phys. Chem. B, vol. 108, no. 43, pp. 16708-16712, 2004.
[35]Th. Pauporté and D. Lincot, “Heteroepitaxial electrodeposition of zinc oxide films on gallium nitride,” Appl. Phys. Lett., vol. 75, no. 24, pp. 3817-3819, 1999.
[36]G.-R. Li, C.-R. Dawa, Q. Bu, F.-L. Zhen, X.-H. Lu, Zh.-H. Ke, H.-E. Hong, Ch.-Zh. Yao, P. Liu, and Y.-X. Tong, “Electrochemical synthesis of orientation-ordered ZnO nanorod bundles,” Electrochem. Commun., vol. 9, pp. 863-868, 2007.
[37]G. Machado, D. N. Guerra, D. Leinen, J. R. Ramos-Barrado, R.E. Marotti, and E. A. Dalchiele, “Indium doped zinc oxide thin films obtained by electrodeposition,” Thin Solid Films, vol. 490, pp. 124-131, 2005.
[38]M. Izaki, S. Watase, and H. Takahashi, “Low-temperature electrodeposition of room-temperature ultraviolet-light-emitting zinc oxide,” Adv. Mater., vol. 15, no. 23, pp. 2000-2002, 2003.
[39]M. Izaki, S. Watase, and H. Takahashi, “Room-temperature ultraviolet light-emitting zinc oxide micropatterns prepared by low-temperature electrodeposition and photoresist,” Appl. Phys. Lett., vol. 83, no. 24, pp. 4930-4932, 2003.
[40]B. Cao, Y. Li, G. Duan, and W. Cai, “Growth of ZnO nanoneedle arrays with strong ultraviolet emissions by an electrochemical deposition method,” Crys. Growth Des., vol. 6, no. 5, pp. 1091-1095, 2006.
[41]B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett., vol. 88, pp. 161101, 2006.
[42]J. Yang, G. Liu, J. Lu, Y. Qiu, and Sh. Yang, “Electrochemical route to the synthesis of ultrathin ZnO nanorod/nanobelt arrays on zinc substrate,” Appl. Phys. Lett., vol. 90, pp. 103109, 2007.
[43]B. Illy, B. A. Shollock, J. L. MacManus-Driscoll, and M. P. Ryan, “Electrochemical growth of ZnO nanoplates,” Nanotechnology, vol. 16, pp. 320-324, 2005.
[44]R. M. Nyffenegger, B. Craft, M. Shaaban, S. Gorer, G. Erley, and R. M. Penner, “A hybrid electrochemical/chemical synthesis of zinc oxide nanoparticles and optically intrinsic thin films,” Chem. Mater. vol. 10, no. 4, pp. 1120-1129, 1998.
[45]H.-Y. Jing, X.-L. Li, Y. Lu, Z.-H. Mai, and M. Li, “Electrochemical self-assembly of highly oriented ZnO-surfactant hybrid multilayers,” J. Phys. Chem. B, vol. 109, no. 7, pp. 2881-2884, 2005.
[46]Y. Liu, Y. Liu, J. Zhang, Y. Lu, D. Shen, X. Fan, “ZnO hexagonal prisms grown onto p-Si (1 1 1) substrate from poly(vinylpyrrolidone) assisted electrochemical assembly,” J. Cryst. Growth, vol. 290, pp. 405-409, 2006.
[48]H.-H. Choi, M. Ollinger, and R. K. Singh, “Enhanced cathodoluminescent properties of ZnO encapsulated ZnS:Ag phosphors using an electrochemical deposition coating,” Appl. Phys. Lett., vol. 82, no. 15, pp. 2494-2496, 2003.
[49]R. Tena-Zaera, A. Katty, S. Bastide, and C. Lévy-Clément, “Annealing effects on the physical properties of electrodeposited ZnO/CdSe core-shell nanowire arrays,” Chem. Mater., vol. 19, no. 7, pp. 1626-1632, 2007
[50]L. Li, Sh. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, and L. Zhang, “Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes,” J. Phys. Chem. C, vol. 111, no. 20, pp. 7288-7291, 2007.
[51]M. Fu, J. Zhou, Q. Xiao, B. Li, R. Zong, W. Chen, and J. Zhang, “ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition,” Adv. Mater. vol. 18, pp. 1001-1004, 2006.
[52]Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett., vol. 76, no. 15, pp. 2011-2013, 2000.
[53]P. Zheng, T. S. Mayer, and Th. N. Jackson, “2007 IEEE device research conference: tour de force multigate and nanowire metal oxide semiconductor field-effect transistors and their application,” ACS Nano, vol. 1, no. 1, pp. 6-9, 2007.
[54]J. Cui and U. J. Gibson, “Enhanced Nucleation, Growth Rate, and Dopant incorporation in ZnO nanowires,” J. Phys. Chem. B, vol. 109, no. 46, pp. 22074-22077, 2005.
[55]W. K. Liu, G. M. Salley, and D. R. Gamelin, “Spectroscopy of photovoltaic and photoconductive nanocrystalline Co2+-doped ZnO electrodes,” J. Phys. Chem. B, vol. 109, no. 30, pp. 144486-14495, 2005.
[56]C. J. Lan, H. Y. Cheng, R. J. Chung, J. H. Li, K. F. Kao, and T. S. Chin, “Bi-Doped ZnO layer prepared by electrochemical deposition,” J. Electrochem. Soc., vol. 154, no. 3, pp. D117-D121, 2007.
[57]T. Pauporté, F. Pellé, b. Viana, and P. Aschehoug, “Luminescence of nanostructured Eu3+/ZnO mixed films prepared by electrodeposition,” J. Phys. Chem. C, vol. 111, no. 42, pp. 15427-15432, 2007.
[58]B. O’Regan, D. T. Schwartz, S. M. Zakeeruddin, and M. grätzel, “Electrodeposited nanocomposite n-p heterojunctions for solid –state dye-sensitized photovoltaics,” Adv. Mater., vol. 12, no. 17, pp. 1263-1267, 2000.
[59]L. Xu, Q. Chen, and D. Xu, “Hierarchical ZnO nanostructures obtained by electrodeposition,” J. Phys. Chem. C, vol. 111, no. 31, pp. 11560-11565, 2007.
[60]R. Könenkamp, R. C. Word, and M. Godinez, “Ultraviolet electroluminescence from ZnO/polymer heterojunction light-emitting diodes,” Nano Lett., vol. 5, no. 10, pp. 2005-2008, 2005.
[61]M. Kaur, S. Bhattacharya, M. Roy, S. K. Deshpande, P. Sharma, S. K. Gupta, and J. V. Yakhmi, “Growth of nanostructures of Zn/ZnO by thermal evaporation and their application for room-temperature sensing of H2S gas,” Appl. Phys. A-Mater. Sci. Process., vol. 87, pp. 91-96, 2007.
[62]H. Zeng, P. Liu, W. Cai, X. Cao, and S. Yang, “Aging-induced self-assembly of Zn/ZnO treelike nanostructures from nanoparticles and enhanced visible emission,” Cryst. Grow Des., vol. 7, no. 6, pp. 1092-1097, 2007.
[63]M. S. Chen and D. W. Goodman, “The structure of catalytically active gold on titania,” Science, vol. 306, pp. 252-255, 2004.
[64]Y. Lu, Y. Yin, Z.-Y. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett., vol. 2, no. 7, pp785-788, 2002.
[65]Y. K. Lai, V. P. M. Shafi, A. Ulman, K. Loos, R. Popovitz-Biro, Y. Lee, T. Vogt, C. Estournés, “One-step synthesis of core(Cr)/shell( -Fe2O3) nanoparticles,” J. Am. Chem. Soc., vol. 127, no. 16, pp.5730-5731, 2005.
[66]A. J. Mieszawska, R. Jalilian, G. U. Sumanasekera, and F. P. Zamborini, “The synthesis and fabrication of one-dimensional nanoscale heterojunctions,” Small, vol. 3, no. 5, pp. 722-756, 2007.
[67]Y. Ding, X. Y. Kong, and Z. L. Wang, “Interface and defect structures of Zn-ZnO core-shell heteronanobelts,” J. Appl. Phys., vol. 95, no. 1, pp. 306-310, 2004.
[68]X.Y. Kong, Y. Ding, and Z. L. Wang, ”Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes,” J. Phys. Chem. B, vol. 108, no. 2, pp. 570-574, 2004.
[69]J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Thermal reduction route to the fabrication of coaxial Zn/ZnO nanocables and ZnO nanotubes,” Chem. Mater., vol. 15, no. 1, pp. 305-308, 2003.
[70]Y. Yan, P. Liu, M. J. Romero, and M. M. Al-Jassim, ”Formation of metallic zinc nanowires,” J. Appl. Phys., vol. 93, no. 8, pp. 4807-4809, 2003.
[71]H. Zeng, W. Cai, Y. Li, J. Hu, and P. Liu, ”Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media,” J. Phys. Chem. B, vol. 109, no. 39, pp. 18260-18266, 2005.
[72]K.-H. Liu, C.-C. Lin, and S.-Y. Chen, “Growth and physical characterization of polygon prismatic hollow Zn-ZnO crystals,” Cryst. Growth Des., vol. 5, no. 2, pp. 483-487, 2005.
[73]B. Liu and H. C. Zeng, “Fabrication of ZnO “dandelions” via a modified Kirkendall process,” J. Am. Chem. Soc., vol. 126, no. 51, pp. 16744-16746, 2004.
[74]X.-H. Zhang, S.-Y. Xie, Z.-Y. Jiang, X. Zhang, Z.-Q. Tian, Z.-X. Xie, R.-B. Huang, and L.-S. Zheng, “Rational design and fabrication of ZnO nanotubes from nanowire templates in a microwave plasma system,” J. Phys. Chem. B, vol. 107, no. 37, pp. 10114-10118, 2003.
[75]J.-J. Wu, S.-C. Liu, C.-T. Wu, K.-H. Chen, and L.-C. Chen, “Heterostructures of ZnO-Zn coaxial nanocables and ZnO nanotubes,” Appl. Phys. Lett., vol. 81, no. 7, pp. 1312-1314, 2002.
[76]H. Zeng, P. Liu, W. Cai, X. Cao, and Sh. Yang, “Aging-induced self-assembly of Zn/ZnO treelike nanostructures from nanoparticles and enhanced visible emission,” Cryst. Growth Des., vol. 7, no. 6, pp. 1092-1097, 2007.
[77]H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, ” Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett., vol. 88, no. 15, pp. 153119, 2006.
[78]X.Y. Zhang, J.Y. Dai, C.H. Lam, H.T. Wang, P.A. Webley, Q. Li, and H.C. Ong, “Zinc/ZnO core/shell hexagonal nanodisk dendrites and their photoluminescence,” Acta Materialia, vol. 55, no. 15, pp. 5039-5044, 2007.
[79]P. X. Gao, C. S. Lao, Y. Ding, and Z. L. Wang, “Metal/semiconductor core/shell nanodisks and nanotubes,” Adv. Func. Mater., vol. 16, no. 1, pp. 53-62, 2006.
[80]Y.-H. Wong and Q. Li, ”Study of the crystallinity of ZnO in the Zn/ZnO nanocable heterostructures,” J. Mater. Chem., vol. 14, no. 9, pp. 1413-1418, 2004.
[81]D. H. Fan, W. Z. Shen, M. J. Zheng, Y. F. Zhu, and J. J. Lu, “Integration of ZnO nanotubes with well-ordered nanorods through two-step thermal evaporation approach,” J. Phys. Chem. C, vol. 111, no. 26, pp. 9116-9121, 2007.
[82]Y. Tong, M. Shao, G. Qian, and Y. Ni, ”Large-scale fabrication of high-purity and uniform Zn nanowires by thermal evaporation,” Nanotechnology, vol. 16, no. 11, pp. 2512-2515, 2005.
[83]Y. X. Liu, Y. C. Liu, D. Z. Shen, G. Z. Zhong, X. W. Fan, X. G. Kong, R. Mu, and D. O. Henderson, “Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica,” Solid State Commun., vol. 121, pp. 531-536, 2002.
[84]D. Andeen, J. H. Kim, F. F. Lange, GS. K. L. Goh, and S. Tripathy, “Lateral epitaxial overgrowth of ZnO in water at 90 oC,” Adv. Funct. Mater., vol. 16, no. 6, pp. 799-804, 2006.
[85]L. Brus, “Electronic wave functions in semiconductor clusters: experiment and theory,” J. Phys. Chem., vol. 90, no. 12, pp. 2555-2560, 1986.
[86]M. Yin, Y. Gu, I. L. Kuskovsky, T. Andelman, Y. Zhu, G. F. Neumark, and S. O’Brien, “Zinc oxide quantum rods,” J. Am. Chem. Soc., vol. 126, no. 20, pp. 6206-6207, 2004.
[87]J. Antony, X. B. Chen, J. Morrison, L. Bergman, Y. Qiang, D. E. McCready, and M. H. Engelhard, “ZnO nanoclusters: synthesis and photoluminescence,” Appl. Phys. Lett., vol. 87, no. 24, pp. 241917, 2005.
[88]C. T. Heise, C. S. Le Duff, M. Boter, C. Casais, J. E. Airey, A. P. Leech, B. Amigues, R. Guerois, G. R. Moore, K. Shirasu, and C. Kleanthous, “Biochemical characterization of RAR1 cysteine- and histidine-rich domains (CHORDs): A novel class of zinc-dependent protein-protein interaction modules,” Biochemistry, vol. 46, no. 6, pp. 1612-1623, 2007.
[89]C. A. Bauer, T. V. Timofeeva, T. B. Settersten, B. D. Patterson, V. H. Liu, B. A. Simmons, and M. D. Allendorf, “Influence of connectivity and porosity on ligand-based luminescence in zinc metal-organic frameworks,” J. Am. Chem. Soc., vol. 129, no. 22, pp. 7136-7144, 2007.
[90]Y. Liu, N. Zhang, Y. Chen, and L. Wang, “Fluorescence sensing and binding behavior of aminobenzenesulfonamidoquinolino-β-cyclodextrin to Zn2+,” Org. Lett., vol. 9, no. 2, pp. 315-318, 2007.
[91]E.-C. Yang, H.-K. Zhao, B. Ding, X.-G. Wang, and X.-J. Zhao, “Four novel three-dimensional triazole-based zinc(II) metal-organic frameworks controlled by the spacers of dicarboxylate ligands: hydrothermal synthesis, crystal structure, and luminescence properties,” Cryst. Growth Des., vol. 7, no. 10, pp. 2009-2015, 2007.
[92]Z. Zhong and Y. Zhao, “Cholate-glutamic acid hybrid foldamer and its fluorescent detection of Zn2+,” Org. Lett., vol. 9, no. 15, pp. 2891-2894, 2007.
[93]M. Watanabe, M. Sakai, H. Shibata, H. Tampo, P. Fons, K. Iwata, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Nakahara, and H. Takasu, “Photoluminescence characterization of excitonic centers in ZnO epitaxial films,” Appl. Phys. Lett., vol. 86, no. 22, pp. 221907, 2005.
[94]E. M. Wong and P. C. Searson, “ZnO quantum particle thin films fabricated by electrophoretic deposition” Appl. Phys. Lett., vol. 74, no. 20, pp. 2939-2941, 1999.
[95]L. Huang, S. Wright, Sh. Yang, D. Shen, B. Gu, and Y. Du, “ZnO well-faceted fibers with periodic junctions,” J. Phys. Chem. B, vol. 108, no. 52, pp. 19901-19903, 2004.
[96]H. Huang, S. Yang, J. Gong, H. Liu, J. Duan, X. Zhao, and R. Zhang, “Controllable assembly of aligned ZnO nanowires/belts arrays,” J. Phys. Chem. B, vol. 109, no. 44, pp. 20746-20750, 2005.
[97]H. Q. Le, S. J. Chua, Y. W. Koh, K. P. Loh, Z. Chen, C. V. Thompson, and E. A. Fitzgerald, “Growth of single crystal ZnO nanorods on GaN using an aqueous solution method,” Appl. Phys. Lett., vol. 87, no. 10, pp. 101908, 2005.
[98]H. Y. Xu, Y. C. Liu, J. G. Ma, Y. M. Luo, Y. M. Lu, D. Z. Shen, J. Y. Zhang, X. W. Fan, and R. Mu, “Photoluminescence of F-passivated ZnO nanocrystalline films made from thermally oxidized ZnF2 films,” J. Phys.: Condens. Matter, vol. 16, pp. 5143-5150, 2004.
[99]Y. Zhang, F. Lu, Z. Wang, and L. Zhang, “Aggregation of ZnO nanorods into films by oriented attachment,” J. Phys. Chem. C, vol. 111, no. 16, pp. 4519-4523, 2007.
[100]J. K. Lee, M. Nastasi, D. W. Hamby, and D. A. Lucca, “Optical observation of donor-bound excitons in hydrogen-implanted ZnO,” Appl. Phys. Lett., vol. 86, no. 17, pp. 171102, 2005.
[101]X. Liu, X. Wu, H. Cao, and R. P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhaned chemical vapor deposition,” J. Appl. Phys., vol. 95, no. 6, pp. 3141-3147, 2004.
Chapter 3
[1]L. Li, X. Qiu, and G. Li, “”Correlation between size-induced lattice variations and yellow emission shift in ZnO nanostructures,” Appl. Phys. Lett., vol. 87, no. 12, pp. 124101, 2005.
[2]D. Li, Y. H. Leung, A. B. Djurišić, Z.T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructus fabricated by the chemical and evaporation methods,” Appl. Phys. Lett., vol. 85, no. 9, pp. 1601-1603, 2004.
[3]L. E. Greene, M. Law, J. Goldberger, F. Kim, J. c. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays,” Angew. Chem. Int. Ed., vol. 42, no. 26, pp. 3031-3034, 2003.
[4]H. Usui, “Influence of surfactant micelles on morphology and photoluminescence of zinc oxide nanorods prepared by one-step chemical synthesis in aqueous solution,” J. Phys. Chem. C, vol. 111, no. 26, pp. 9060-9065, 2007.
[5]Z. Huang, C. Chai, and B. Cao, “Temperature-dependent emission shifts of peanutlike ZnO microrods synthesized by a hydrothermal method,” Cryst. Growth Des., vol. 7, no. 9, pp. 1686-1689, 2007.
[6]Y. Yang, H. Yan, Z. Fu, B. Yang, and J. Zuo, “Correlation between 577 cm-1 Raman scattering and green emission in ZnO ordered nanostructures,” Appl. Phys. Lett., vol. 88, no. 19, pp. 191909, 2006.
[7]S. A. Studenikin, N. Golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., vol. 84, no. 4, pp. 2287-2294, 1998.
[8]B. Cao, W. Cai, and H. Zeng, “Temperature-dependent shifts of three emission bands for ZnO nanoneedle arrays,” Appl. Phys. Lett., vol. 88, pp. 161101, 2006.
[9]B. Cao, W. Cai, H. Zeng, and G. Duan, “Morphology evolution and photoluminescence properties of ZnO films electrochemically deposited on conductive glass substrates,” J. Appl. Phys., vol. 99, no. 7, pp. 073516, 2006.
[10]B. Guo, Z. R. Qiu, and K. S. Wong, “Intensity dependence and transient dynamics of donor-acceptor pair recombination in ZnO thin films grown on 001 silicon,” Appl. Phys. Lett., vol. 82, no. 14, pp. 2290-2292, 2003.
[11]Y. W. Heo, D. P. Norton, and S. J. Pearton, “Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 98, no. 7, pp. 073502, 2005.
[12]X. L. Wu, G. G. Siu, C. L. Fu, and H. C. Ong, “Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films,” Appl. Phys. Lett., vol. 78, no. 16, pp. 2285-2287, 2001.
[13]H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, “Annealing effect on the property of ultraviolet and green emission of ZnO thin films,” J. Appl. Phys., vol. 95, no. 3, pp. 1246-1250, 2004.
[14]X. Liu, X. Wu, H. Cao, and R.P. H. Chang, “Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition,” J. Appl. Phys., vol. 93, no. 6, pp. 3141-3147, 2004.
[15]S.-H. Jeong, b.-S. Kim, and B.-T. Lee, “Photoluminescence dependence of ZnO films grown on Si 100 by radio-frequency magnetron sputtering on the growth ambient,” Appl. Phys. Lett., vol. 82, no. 16, pp. 2625-2627, 2003.
[16]C. Gu, J. Li, J. Lian, and G. Zneng, “Electrochemical synthesis and optical properties of ZnO thin film on In2O3: Sn (ITO)-coated glass,” Appl. Surf. Sci., vol. 253, no. 17, pp. 7011-7015, 2007.
[17]Y. Yang, H. Yan, Z. Fu, B. Yang, L. Xia, Y. Xu, J. Zuo, and F. Li, “Photoluminescence and Raman studies of electrochemically as-grown and annealed ZnO films,” Solid State Commun., vol. 138, no. 10-11, pp. 521-525, 2006.
[18]L. Xu, Y. Guo, Q. Liao, J. Zhang, and D. Xu, “Morphological control of ZnO nanostructures by electrodeposition,” J. Phys. Chem. B, vol. 109, no. 28, pp. 13519-13522, 2005.
[19]Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett., vol. 76, no. 15, pp. 2011-2013, 2000.
[20]S.-J. Lee, S. K. Park, C. R. Park, J. Y. Lee, J. Park, and Y. R. Do, “Spatially separated ZnO nanopillar arrays on Pt/Si substrates prepared by electrochemical deposition,” J. Phys. Chem. C, vol. 111, no. 32, pp. 11793-11801, 2007.
[21]B. Marí, F. J. Manjón, M. Mollar, J. Cembrero, and R. Gómez, “Photoluminescence of thermal-annealed nanocolumnar ZnO thin films grown by electrodeposition,” Appl. Surf. Sci., vol. 252, no. 8, pp. 2826-2831, 2006.
[22]Y. Liu, Y. Liu, J. Zhang, Y. Lu, D. Shen, and X. Fan, “ZnO hexagonal prisms grown onto p-Si (111) substrate from poly(vinylpyrrolidone) assisted electrochemical assembly,” J. Cryst. Growth, vol. 290, pp. 405-409, 2006.
[23]Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, and H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air,” J. Appl. Phys., vol. 94, no. 1, pp. 354-358, 2003.
[24]S. J. Chen, Y. C. Liu, J. G. Ma, D. X. Zhao, Z. Z. Zhi, Y. M. Lu, J. Y. Zhang, D. Z. Shen, and X. W. Fan, “High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn,” J. Cryst. Growth, vol. 240, no. 3-4, pp. 467-472, 2002.
[25]Z. Zhang, H. Yu, X. Shan, and M. Han, “Near-room-temperature production of diameter-tunable ZnO nanorod arrays through natural oxidation of zinc metal,” Chem. Eur. J., vol. 11, no. 10, pp. 3149-3154, 2005.
[26]B. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn,” Appl. Phys. Lett., vol. 75, no. 18, pp. 2761-2763, 1999.
[27]S. Chen, Y. Liu, C. Shao, R. Mu, Y. Lu, J. Zhang, D. Shen, and X. Fan, “Structural and optical properties of uniform ZnO nanosheets,” Adv. Mater., vol. 17, no. 5, pp. 586-590, 2005.
[28]A. B. Djurišić, Y. H. Leung, W. C. H. Choy, K. W. Cheah, and W. K. Chan, “Visible photoluminescence in ZnO tetrapod and multipod structures,” Appl. Phys. Lett., vol. 84, no. 14, pp. 2635-2637, 2004.
[29]G. E. Hammer and R. M. Shermenski, “The oxidation of zinc in air studied by XPS and AES,” J. Vac. Sci. Technol. A, vol. 1, no. 2, pp. 1026-1028, 1983.
[30]T.-W. Kim, T. Kawazoe, S. Yamazaki, J. Lim, T. Yatsui, and M. Ohtsu, “Room temperature ultraviolet emission from ZnO nanocrystallites fabricated by the low temperature oxidation of metallic Zn precursors,” Solid State Commun., vol. 127, no. 1, pp. 21-24, 2003.
[31]J. K. Lee, C. R. Tewell, R. K. Schulze, M. Nastasi, D. W. Hamby, D. A. Lucca, H. S. Jung, and K. S. Hong, “Synthesis of ZnO nanocrystals by subsequent implantation of Zn and O species,” Appl. Phys. Lett., vol. 86, no. 18, pp. 183111, 2005.
[32]A. Amekura, N. Umeda, H. Boldryeva, N. Kishimoto, Ch. Buchal, and S. Mantl, “Embedment of ZnO nanoparticles in SiO2 by ion implantation and low-temperature oxidation,” Appl. Phys. Lett., vol. 90, no. 8, pp. 083102, 2007.
[33]H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett., vol. 88, no. 15, pp. 153119, 2006.
[34]H. Amekura, N. Umeda, Y. Sakuma, N. Kishimoto, and Ch. Buchal, “Fabrication of ZnO nanoparticles in SiO2 by ion implantation combined with thermal oxidation,” Appl. Phys. Lett., vol. 87, no. 1, pp. 013109, 2005.
[35]F. Ren, C. Z. Jiang, and X. H. Xiao, “Fabrication of single-crystal ZnO film by Zn ion implantation and subsequent annealing,” Nanotechnology, vol. 18, no. 28, pp. 285609, 2007.
[36]Y. C. Liu, H. Y. Xu, R. Mu, D. O. Henderson, Y. M. Lu, J. Y. Zhang, D. Z. Shen, X. W. Fan, and C. W. White, “Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix,” Appl. Phys. Lett., vol. 83, no. 6, pp. 1210-1212, 2003.
[37]Y. X. Liu, Y. C. Liu, D. Z. Shen, G. Z. Zhong, X. W. Fan, X. G. Kong, R. Mu, D. O. Henderson, “Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica,” Solid State Commun., vol. 121, no. 9-10, pp. 531-536, 2002.
[38]Y. X. Liu, Y. C. Liu, c. L. Shao, and R. Mu, “Excitonic properties of ZnO nanocrystalline films prepared by oxidation of zinc-implanted silica,” J. Phys. D: Appl. Phys., vol. 37, no. 21, pp. 3025-3029, 2004.
[39]K.-K. Kim, N. Koguchi, Y.-W. Ok, T.-Y. Seong, and S.-J. Park, “Fabrication of ZnO quantum dots embedded in an amorphous oxide layer,” Appl. Phys. Lett., vol. 84, no. 19, pp. 3810-3812, 2004.
[40]Y.-Z. Yoo, Y. Osaka, T. Fukumura, Z. Jin, M. Kawasaki, H. Koinuma, T. Chikyow, P. Ahmet, A. Setoguchi, and S. F. Chichibu, “High temperature grow of ZnS films on bare Si and transformation of ZnS to ZnO by thermal oxidation,” Appl. Phys. Lett., vol. 78, no. 5, pp. 616-618, 2001.
[41]Y. Nakano, T. Morikawa, T. Ohwaki, and Y. Taga, “Electrical characterization of p-type N-doped ZnO films prepared by thermal oxidation of sputtered Zn3N2 films,” Appl. Phys. Lett., vol. 88, no. 17, pp. 172103, 2006.
[42]H. Y. Xu, Y. C. Liu, J. G. Ma, Y. M. Luo, Y. M. Lu, D. Z. Shen, J. Y. Zhang, X. W. Fan, and R. Mu, J. Phys. : Condens. Matter, vol. 16, no. 28, pp. 5143-5150, 2004.
[43]G. Hu, H. gong, E. F. Chor, and P. Wu, “ZnO homojunctions grown by cosputtering ZnO and Zn3P2 targets”, Appl. Phys. Lett., vol. 89, no. 2, pp. 021112, 2006.
[44]S. Gao, H. Zhang, X. Wang, R. Deng, D. Sun, and G. Zheng, “ZnO-based hollow microspheres: Biopolymer-assisted assemblies from ZnO nanorods,” J. Phys. Chem. B, vol. 110, no. 32, pp. 15847-15852, 2006.
[45]S. Cho, J. Ma, Y. Kim, Y. Sun, G. K. L. Wong, and J. B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn,” Appl. Phys. Lett., vol. 75, no. 18, pp. 2761-2763, 1999.
[46] S. J. Chen, Y. C. Liu, J. G. Ma, D. X. Zhao, Z. Z. Zhi, Y. M. Lu, J. Y. Zhang, D. Z. Shen, and X. W. Fan, ”High-quality ZnO thin films prepared by two-step thermal oxidation of the metallic Zn,” J. Cryst. Growth, vol. 240, no. 3-4, pp. 467-472, 2002.
[48] Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay, X. H. Zhang, H. H. Hng, “Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air” J. Appl. Phys., vol. 94, no. 1, pp.354-358, 2003.
[49]T. Yatsui, T. Kawazoe, T. Shimizu, Y. Yamamoto, M. Ueda, M. Kourogi, M. Ohtsu, and G. H. Lee, “Observation of size-dependent features in the photoluminescence of zinc oxide nanocrystallites by near-field ultraviolet spectroscopy,” Appl. Phys. Lett., vol. 80, no. 8, pp. 1444-1446, 2002.
[50]J. Antony, X. B. Chen, J. Morrison, L. Bergman, Y. Qiang, D. E. McCready, and M. H. Gngelhard,
“ZnO nanoclusters: Synthesis and photoluminescence,” Appl. Phys. Lett., vol. 87, no. 24, pp. 241917, 2005.
[51]Y. C. Liu, H. Y. Xu, R. Mu, D. O. Henderson, Y. M. Lu, J. Y. Zhang, D. Z. Shen, X. W. Fan, and C. W. White, “Production, structure, and optical properties of ZnO nanocrystals embedded in CaF2 matrix,” Appl. Phys. Lett., vol. 83, no. 6, pp. 1210-1212, 2003.
[52]R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, and K. A. Jones, “Heteroepitaxy
of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices,” Appl. Phys. Lett.,
vol. 73, no. 3, pp. 348-350, 1998.
[53]W. D. Callister Jr., “Materials Science and Engineering: an Introduction,” pp. 752, Wiley, 2002.
[54]F. Witt and W. R. Vook, “Thermally induced strains in diamond cubic, tetragonal, orthorhombic, and hexagonal films,” J. Appl. Phys., vol. 40, no. 2, pp. 709-719, 1969.
[55]N. Saito, H. Haneda, T. Sekiguchi, T. Ishigaki, and K. Koumoto, ”Effect of postdeposition annealing on luminescence from zinc oxide patterns prepared by the electroless deposition process,” J. Electrochem. Soc., vol. 151, no. 8, pp. H169-173, 2004.
[56]S. A. Studenikin, N. golego, and M. Cocivera, “Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis,” J. Appl. Phys., vol. 84, no. 4, pp. 2287-2294, 1998.
[57]Y. W. Heo, D. D. Norton, and S. J. Pearton, “Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy,” J. Appl. Phys., vol. 98, no. 7, pp. 073502, 2005.
[58]M. Liu, A. H. Kitai, and P. Mascher, “Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese,” J. Lumin., vol. 54, no. 1, pp. 35-42, 1992.
[59]L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” J. Chem. Phys., vol. 80, no. 9, pp. 4403-4409, 1984.
[60]J. Li and L.-W. Wang, “Band-structure-corrected local density approximation study of semiconductor quantum dots and wires,” Phys. Rev. B, vol. 72, no. 12, pp. 125325, 2005.
[61]J. P. Wilcoxon, J. E. Martin, F. Parsapour, B. Wiedenman, and D. F. Kelley, “Photoluminescence from nanosize gold clusters,” J. Chem. Phys., vol. 108, no. 21, pp. 9137-9143, 1998.
[62]L. A. Peyser, A. E. Vinson, A. P. Bartko, and R. M. Dickson, “Photoactivated Fluorescence from Individual Silver Nanoclusters,” Science, vol. 291, no. 5501, pp. 103-106, 2001.
[63]Y. Tong, M. Shao, G. Qian and Y. Ni, ”Large-scale fabrication of high-purity and uniform Zn nanowires by thermal evaporation,” Nanotechnology, vol. 16 no. 11, pp. 2512-2516, 2005.
[64]H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett., vol. 88, no. 15, pp. 153119, 2006.
Chapter 4
[1]A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
[2]K. Kabra, R. Chaudhary, and R. L. Sawhney, “Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review,” Ind. Eng. Chem. Res., vol. 43, no. 24, pp. 7683-7696, 2004.
[3]A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., “Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results,” Chem. Rev., vol. 95, no. 3, pp. 735-758, 1995.
[4]Y. Hou, X. Wang, L. Wu, Z. Ding, and X. Fu, “Efficient decomposition of benzene over a β–Ga2O3 photocatalyst under ambient conditions,” Environ. Sci. Technol., vol. 40, no. 18, pp. 5799-5803, 2006.
[5]C. Karunakaran and S. Senthilvelan, “Fe2O3-photocatalysis with sunlight and UV light: Oxidation of aniline,” Electrochem. Commun., vol. 8, no. 1, pp. 95-101, 2006.
[6]B. Li, Y. Xie, M. Jing, G. Rong, Y. Tang, and G. Zhang, “In2O3 hollow microspheres: Synthesis from designed In(OH)3 precursors and applications in gas sensors and photocatalysis,” Langmuir, vol. 22, no. 22, pp. 9380-9385, 2006.
[7]C. Karunakaran and S. Senthilvelan, “Photocatalysis with ZrO2: Oxidation of aniline,” J. Mole. Catal. A: Chem., vol. 233, no. 1-2, pp. 1-8, 2005.
[8]G. Waldner, A. Brüger, N. S. Gaikwad, M. Neumann-Spallart, “WO3 thin films for photoelectrochemical purification of water,” Chemosphere, vol. 67, no. 4, pp. 779-784, 2007.
[9]G. Wang, W. Lu, J. Li, J. Choi, Y. Jeong, S.-Y. Choi, J.-B. Park, M. K. Ryu, and K. Lee, “V-shaped tin oxide nanostructures featuring a broad photocurrent signal: An effective visible-light-driven photocatalyst,” Small, vol. 2, no. 12, pp. 1436-1439, 2006.
[10]T. Murase, H. Irie, and K. Hashimoto, “Visible light sensitive photocatalysts, nitrogen-doped Ta2O5 powders,” J. Phys. Chem. B, vol. 108, no. 40, pp. 15803-15807, 2004.
[11]J. Wang, S. Yin, M. Komatsu, Q. Zhang, F. Saito, and T. Sato, “Photo-oxidation properties of nitrogen doped SrTiO3 made by mechanical activation,” Appl. Catal. B: Environ., vol. 52, no. 1, pp. 11-21, 2004.
[12]W.-T. Yao, S.-H. Yu, S.-J. Liu, J.-P. Chen, X.-M. Liu, and F.-Q. Li, “Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property,” J. Phys. Chem. B, vol. 110, no. 24, pp. 11704-11710, 2006.
[13]S. Xiong, B. Xi, C. Wang, G. Xi, X. Liu, and Y. Qian, “Solution-phase synthesis and high photocatalytic activity of wurtzite ZnSe ultrathin nanobelts: A general route to 1D semiconductor nanostructured materials,” Chem.-Eur. J., vol. 13, no. 28, pp. 7926-7932, 2007.
[14]J.-S. Hu, L.-L. Ren, Y.-G. Guo, H.-P. Liang, A.-M. Cao, L.-J. Wan, and C.-L. Bai, “Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles,” Angew. Chem. Int. Ed., vol. 44, no. 8, pp. 1269-1273, 2005.
[15]Q. Zhang and L. Gao, “Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation,” Langmuir, vol. 20, no. 22, pp. 9821-9827, 2004.
[16]Z. Kang, C. H. A. Tsang, N.-B. Wong, Z. Zhang, and S.-T. Lee, “Silicon quantum dots: A general photocatalyst for reduction, decomposition, and selective oxidation reactions,” J. Am. Chem. Soc., vol, 129, no. 40, pp. 12090-12091, 2007.
[17]A. Fujishima, X. Zhang, and D. A. Tryk, “Heterogeneous photocatalysis: From water photolysis to applications in environmental cleanup,” Inter. J. Hydrog. Energy, vol. 32, no. 14, pp. 2664-2672, 2007.
[18]A. Kongkanand and P. V. Kamat, “Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions,” ACS Nano, vol. 1, no. 1, pp. 13-21, 2007.
[19]R. Ma, T. Sasaki, and Y. Bando, “Layer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes, and nanotubes/nanosheets with polycations,” J. Am. Chem. Soc., vol. 126, no. 33, pp. 10382-10388, 2004.
[20]Q. Chang, L. Yan, M. Chen, H. He, and J. Qu, “Bactericidal mechanism of Ag/Al2O3 against Escherichia coli,” Langmuir, vol. 23, no. 22, pp. 11197-11199, 2007.
[21]B. G. Botta, J. A. Navio, M. C. Hidalgo, G. M. Restrepo, M. I. Litter, “Photocatalytic properties of ZrO2 and Fe/ZrO2 semiconductors prepared by a sol-gel technique,” J. Photochem. Photobio. A: Chem., vol. 129, no. 1-2, pp. 89-99, 1999.
[22]A. S. Deshpande, D. G. Shchukin, E. Ustinovich, M. Antonietti, and R. A. Caruso, “Titania and mixed titania/aluminum, gallium, or indium oxide spheres: Sol-gel/template synthesis and photocatalytic properties,” Adv. Funct. Mater., vol. 15, no. 2, pp. 239-245, 2005.
[23]H. Jia, H. Xu, Y. Hu, Y. Tang, L. Zhang, “TiO2@CdS core-shell nanorods films: Fabrication and dramatically enhanced photoelectrochemical properties,” Electrochem. Commun., vol. 9, no. 3, pp. 354-360, 2007.
[24]C. Wang, K.-W. Kwon, M. L. Odlyzko, B. H. Lee, and M. Shim, “PbSe nanocrystal/TiOX heterostructured films: A simple route to nanoscale heterointerfaces and photocatalysis,” J. Phys. Chem. C, vol. 111, no. 31, pp. 11734-11741, 2007.
[25] (a)D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven N-F-codoped TiO2 photocatalytsts. 1. Synthesis by spray pyrolysis and surface characterization,” Chem. Mater., vol. 17, no. 10, pp. 2588-2595, 2005.; (b)D. Li, H. Haneda, S. Hishita, and N. Ohashi, “Visible-light-driven N-F-codoped TiO2 photocatalytsts. 2. Optical characterization, photocatalysis, and potential application to air purification,” Chem. Mater., vol. 17, no. 10, pp. 2596-2602, 2005.
[26] (a)C. Blever, R. Bellod, A. Fuerte, M. Fernández-García, “Nitrogen-containing TiO2 photocatalysts part 1. Synthesis and solid characterization,” Appl. Catal. B: Environ., vol. 65, no. 3-4, pp. 301-308, 2006.; (b) C. Blever, R. Bellod, S. J. Stewart, F. G. Requejo, M. Fernández-García, “Nitrogen-containing TiO2 photocatalysts part 2. Photocatalytic behavior under sunlight excitation,” Appl. Catal. B: Environ., vol. 65, no. 3-4, pp. 309-314, 2006.
[27]J. Yu, Y. Su, and B. Cheng, “Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania,” Adv. Funct. Mater., vol. 17, no. 12, pp. 1984-1990, 2007.
[28]C.-C. Chen, “Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions,” J. Mole. Catal. A: Chem., vol. 264, no. 1-2, pp. 82-92, 2007.
[29]A. Akyol, H. C. Yatmaz, and M. Bayramoglu, “Photocatalytic decolorization of Remazol red RR in aqueous ZnO suspensions,” Appl. Catal. B: Environ., vol. 54, no. 1, pp. 19-24, 2004.
[30]C. Lizama, J. Freer, J. Baeza, and H. D. Mansilla, “Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions,” Catal. Today, vol. 76, no. 2-4, pp. 235-246, 2002.
[31]V. Houšková, V. Stengl, S. Bakardjieva, N. Murafa, A. Kalendová, and F. Opluštil, “Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity,” J. Phys. Chem. A, vol. 111, no. 20, pp. 4215-4221, 2007.
[32]H. C. Yatmaz, A. Akyol, and M. Bayramoglu, “Kinetics of the photocatalytic decolorization of an Azo reactive dye in aqueous ZnO suspensions,” Ind. Eng. Chem. Res., vol. 43, no. 19, pp. 6035-6039, 2004.
[33]A. A. Khodja, T. Sehili, J.-F. Pilichowski, and P. Boule, “Photocatalyitc degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions,” J. Photochem. Photobio. A: Chem., vol. 141, no. 2-3, pp. 231-239, 2001.
[34]A. Sharma, P. Rao, R. P. Mathur, and S. C. Ameta, “Photocatalytic reactions of xylidine ponceau on semiconducting zinc oxide powder,” J. Photochem. Photobio. A: Chem., vol. 86, no. 1-3, pp. 197-200, 1995.
[35]J. C. Zhao, Q. Wan, and T. H. Wang, “Enhanced photocatalytic activity of ZnO nanotetrapods,” Appl. Phys. Lett., vol. 87, no. 8, pp. 083105, 2005.
[36]C. Ye, Y. Bando, G. Shen, and D. Golberg, “Thickness-dependent photocatalytic performance of ZnO nanoplatelets,” J. Phys. Chem. B, vol. 110, no. 31, pp. 15146-15151, 2006.
[37]X. Wang, P. Hu, Y. Fangli, and L. Yu, “Preparation and characterization of ZnO hollow spheres and ZnO-carbon composite materials using colloidal carbon spheres as templates,” J. Phys. Chem. C, vol. 111, no. 18, pp. 6706-6712, 2007.
[38]T. Pauportć and J. Rathouský, “Electrodeposited mesoporous ZnO thin films as efficient photocatalysts for the degradation of dye pollutants,” J. Phys. Chem. C, vol. 111, no. 21, pp. 7639-7644, 2007.
[39]T.-J. Kuo, C.-N. Lin, C.-L. Kuo, and M. H. Huang, “Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts,” Chem. Mater., vol. 19, no. 21, pp. 5143-5147, 2007.
[40]Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, and Y. Zhu, “Luminescence and photocatalytic activity of ZnO nanocrystals correlation between structure and property,” Inorg. Chem., vol. 46, no. 16, pp. 6675-6682, 2007.
[41]R. Brayner, R. Ferrari-lliou, N. Brivois, S. Djediat, M. F. Benedetti, and F. Fićvet, “Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium,” Nano Lett., vol. 6, no. 4, pp. 866-870, 2006.
[42]F. Xu, P. Zhang, A. Navrotsky, Z.-Y. Yuan, T.-Zhen Ren, M. Halasa, and B.-L. Su, “Hierarchically assembled porous ZnO nanoparticles: Synthesis, surface energy, and photocatalytic activity,” Chem. Mater., vol. 19, no. 23, pp. 5680-5686, 2007.
[43]J. L. Yang, S. J. An, W. I. Park, G.-C. Yi, and W. Choi, “Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition,” Adv. Mater., vol. 16, no. 18, pp.1661-1664, 2004.
[44]C. Hariharan, “Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited,” Appl. Catal. A: General, vol. 304, pp. 55-61, 2006.
[45]M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, and P. Praserthdam, “Ag-ZnO catalysts for UV-photodegradation of methylene blue,” Appl. Catal. B: Environ., vol. 63, no. 3-4, pp. 305-312, 2006.
[46]L. Jing, D. Wang, B. Wang, S. Li, B. Xin, H. Fu, and J. Su, “Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles,” J. Mole. Catal. A: Chem., vol. 244, no. 1-2, pp. 193-200, 2006.
[48]Y. Zheng, L. Zheng, Y. Zhan, X. Lin, q. Zheng, and K. Wei, “Ag/ZnO heterostructure nanocrystals: Synthesis, characterization, and photocatalysis,” Inorg. Chem., vol. 46, no. 17, pp. 6980-6986, 2007.
[49]Y. Zhang and J. Mu, “One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites,” J. Colloid Interface Sci., vol. 309, no. 2, pp. 478-484, 2007.
[50]J.-J. Wu and C.-H. Tseng, “Photocatalytic properties of nc-Au/ZnO nanorod composites,” Appl. Catal. B: Environ., vol. 66, no. , pp. 51-57, 2006.
[51]C.-C. Hsu and N. L. Wu, “Synthesis and photocatalytic activity of ZnO/ZnO2 composite,” J. Photochem. Photobio. A: Chem., vol. 172, no. 3, pp. 269-274, 2005.
[52]F. Vietmeyer, B. Seger, and P. V. Kamat, “Anchoring ZnO particles on functionalized single wall carbon nanotubes. Excited state interactions and charge collection,” Adv. Mater., vol. 19, no. 19, pp. 2935-2940, 2007.
[53]N. Sobana and M. Swaminathan, “Combination effect of ZnO and activated carbon for solar assisted photocatalytic degradation of direct blue 53,” Sol. Energy Mater. Sol. Cells, vol. 91, no. 8, pp. 727-734, 2007.
[54] (a)D. Li, H. Haneda, N. Ohashi, S. Hishita, and Y. Yoshikawa, “Synthesis of nanosized nitrogen-containing MOx-ZnO (M = W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition,” Catal. Today, vol. 93-95, pp. 895-901, 2004. (b)D. Li and H. Haneda, “Enhancement of photocatalytic activity of sprayed nitrogen-containing ZnO powders by coupling with metal oxides during the acetaldehyde decomposition,” Chemosphere, vol. 54, no. 8, pp. 1099-1110, 2004. (c) D. Li and H. Haneda, “Photocatalysis of sprayed nitrogen-containing Fe2O3-ZnO and WO3-ZnO composite powders in gas-phase acetaldehyde decomposition,” J. Photochem. Photobio A: Chem., vol. 160, no. 3, pp. 203-212, 2003.
[55]H.-F. Lin, S.-C. Liao, and S.-W. Hung, “The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst,” J. Photochem. Photobio. A: Chem., vol. 174, no. 1, pp. 82-87, 2005.
[56]C. A. K. Gouvêa, F. Wypych, S. G. Moraes, N. Duran, and P. Peralta-Zamora, “Semiconductor-assisted photodegradation of lignin, dye, and kraft e uent by Ag-doped ZnO,” Chemosphere, vol. 40, no. 4, pp. 427-432, 2000.
[57]E. S. Jang, J.=H. Won, S.-J. Hwang, and J.-H. Choy, “Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity,” Adv. Mater., vol. 18, no. 24, pp. 3309-3312, 2006.
[58]J. Lee and Y. Tak, “Electrodeposition of ZnO on ITO electrode by potential modulation method,” Electrochem. Solid-State Lett., vol. 4, no. 9, pp. C63-65, 2001.
[59] F. Montoncello, M.C. Carotta, B. Cavicchi, M. Ferroni, A. Giberti, V. Guidi, C. Malagù, G. Martinelli, F. Meinardi, “Near-infrared photoluminescence in titania: Evidence for phonon-replica effect,” J. Appl. Phys., vol. 94, no. 3, pp. 1501-1505, 2003.
[60] L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, “Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity,” Sol. Energy Mater. Sol. Cells 90, no. 12, pp. 1773-1787, 2006.
[61]S. S. Kumar, J. Joseph, and K. L. Phani, “Novel method for deposition of gold-prussian blue nanocomposite films induced by electrochemically formed gold nanoparticles: Characterization and application to electrocatalysis,” Chem. Mater., vol. 19, no. 19, pp. 4922-4730, 2007.
[62]B. J. Bozlee and G. J. Exarhos, “Preparation and characterization of gold and ruthenium colloids in thin zinc oxide films,” Thin Solid Films, vol. 377-378, pp. 1-7, 2000.
[63]H. Goto, Y. Hanada, T. Ohno, and M. Matsumura, “Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles,” J. Catal., vol. 225, no. 1, pp. 223-229, 2004.
[64]V. Subramanian, E. E. Wolf, and P. V. Kamat, “Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. charge distri
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code