Responsive image
博碩士論文 etd-0626108-192039 詳細資訊
Title page for etd-0626108-192039
論文名稱
Title
利用水深觀測反推台灣海峽的潮波運動行為
An investigation of tidal propagation in Taiwan Strait using in-situ depth measurements
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-04-18
繳交日期
Date of Submission
2008-06-26
關鍵字
Keywords
水深、潮汐、台灣海峽、全球潮位、潮波運動、調和分析、反推水位
OSU, harmonic analysis, depth, EK500, tide, Taiwan Strait
統計
Statistics
本論文已被瀏覽 5684 次,被下載 1211
The thesis/dissertation has been browsed 5684 times, has been downloaded 1211 times.
中文摘要
台灣海峽的潮汐及海流是近年熱門的研究議題,前人對台灣海峽潮汐的相關研究,無論是觀測資料或數值分析,一般均是以近岸之潮位實測資料進行分析或驗證,離岸之潮位實測資料比較不容易取得。本研究為探討台灣海峽離岸的潮位資料,利用1989-2003年間海洋研究船一、二、三號所搜集的EK500船測水深,假設船測水深為地形水深加上潮汐水位變化,反推台灣海峽內部的水位資料,並進一步探討潮波運動行為。
原始船測水深資料共1500多航次,資料筆數近600萬筆,經一系列品質管理程序,篩選可用資料。步驟包括:1.取各航次資料繪圖(經度-緯度、經度-深度、時間-深度),以人工方式選取合理之時間、水深及航跡範圍。2.濾除相鄰5點間大於平均值正負3倍標準偏差的資料點,並以內插方式進行取代。3.依航跡取2分鐘時間平均,濾除波浪之效應及減少資料量。經以上步驟得到可用資料約55萬筆。
依歷年水深資料之分布密度,將台灣海峽分為32個小區域,經高斯分布權重之內插方式計算出區域地形水深(取格點間內含10筆以上原始資料數以代表該區潮位變化,高斯半徑為3倍格點距離),再由該區之船測水深扣除地形水深所求得水位變化進行調和分析,探討半日潮(M2)及全日潮(K1、O1)之相位及振幅在台灣海峽離岸無實測資料處之空間變化。
本研究之主要結果有:1.潮位變化可信度分析顯示,地形平坦區域準確度較高,地形變化劇烈則誤差大。2.潮汐預報與錨碇水位資料及全球潮位模式之驗證,三者相位均十分接近,但本研究潮汐預報之潮差較小。3.潮汐預報與全球潮位模式之結果相近,符合台灣海峽潮波自北方大陸沿岸向南行進,並以凱文波形式傳遞。4.台灣海峽北部的潮位變化經M2、K1分潮的調和分析結果與前人相關研究較符合;台灣海峽中南部的潮位變化經M2、O1分潮的調和分析結果與前人相關研究較符合。
Abstract
The studies of tidal current and sea level variation in the Taiwan Strait are popular topics in recent years. The sea level data, to be applied to data analysis or model forcing and validation, are mostly observed in the near shore region. It is relative not easier to obtain real tidal data in the offshore area. This study intended to obtain sea level data within Taiwan Strait, using in-situ water depth measurements collected by EK500 of research vessels OR1, OR2 and OR3 during 1989-2003. The basic assumption of this work is that the changes of sea level and topographical depth equal to observed water depth. By using a large set of field measurements, it is possible to get bottom topography such that tidal data can be extracted by harmonic analysis of long-term discrete time series of water depth data.
A total of 1513 cruises of water depth data were collected, which account for nearly 6 million samples. These data were screened through a series of criteria for quality control. Firstly, data were plotted cruise by cruise ( longitude vs latitude , longitude vs depth , time vs depth), then reasonable range of time, depth and region were choosed manually. Second, outliers, defined as values greater than 3 standard deviations on 5 point moving mean along the cruise track (or time), were replaced by linear interpolation values. Finally, a 2-minute moving average was applied to the along track time series water depth data. This step was trying to remove the effect of surface waves. The original huge records were reduced to about 550,000 valuable samples for the 1513 cruises data.
According to the density distribution of water depth samples in Taiwan Strait, 32 sub-region were selected for topography and harmonic analyses. In each sub-region, the bottom topography was mapped by an optimal interpolation method through a Gaussian weighting function. The radius of Gaussian weighting function applied is 3 time of the distance of grid. Water depth samples subtracted topographical depth of nearby grid to form a set of sea level data ready for harmonic analysis. The phase and amplitude of semi-diurnal tides (M2) and diurnal tides (K1、O1) in each sub-region were computed for the 32 regions in Taiwan Strait.
The water depth measurements derived sea level variations were compatible with that of a global tidal model (OSU) and a set of moored long-term pressure records in the middle of the strait. Especially, the tidal phase among these results were quite close. However, the tidal amplitudes of water depth data derived were smaller. Sensitivity analysis showed that the errors, differences between OSU model and depth derived sea levels, were small with regions of high density of water depth measurements. Both harmonic derived sea level variations and OSU model predictions indicated a southward propagating tidal wave, which matched with the scenario of Kevin wave propagation in Taiwan Strait. Our analysis also showed that the sea level variations in the northern part of the strait were dominated by M2 and K1 components while the southern part of the strait were dominated by M2 and O1 components.
目次 Table of Contents
章次 頁次
謝誌 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅳ
目錄 Ⅶ
表目錄 Ⅸ
圖目錄 Ⅹ
第一章、前言 1
1-1 研究緣起 1
1-2 研究區域地形介紹 2
1-3 前人研究 4
1-4 研究目的 7
第二章、資料來源與品質管制 12
2-1 EK500水深資料 12
2-2資料品質管制 14
第三章、資料分析處理 23
3-1地形水深計算 23
3-2船測水位變化 26
3-3水位變化調合分析 27
3-4水位分析預報之驗證 28
第四章、結果與討論 38
4-1台灣海峽地形水深 38
4-2小區域地形水深計算與反推水位結果 38
4-3船測水位變化可信度分析 41
4-3-1.船測水位與錨碇水位資料及全球潮位模式驗證 41
4-3-2.平行台灣海峽船測水位變化 41
4-3-3.平行台灣海峽船測水位變化 43
第五章、結論 69
第六章、參考文獻 71
參考文獻 References
1.Jan, S. and C.S. Chern, J. Wang, S.Y. Chao (2004), The anomalous amplification of M2 tide in the Taiwan Strait. Geophysical Research Letters, Vol. 31,
2.Juang, W.J. and M.C. Lin, W.J. Liou (2001), Peculiar appearance of nearly symmetrical flooding time along the western coast of Taiwan, The Chinese Journal of Mechanics, Vol. 17(4), 211–220.
3.Lin, M.C. and W.J. Juang, T.K. Tsay (2000), Applocation of the Mils-Slope Equation to Tidal Computations in the Taiwan Strait, J. Oceanography, Vol.56, 625-642
4.Lin, M.C. and W.J. Juang, T.K. Tsay (2001), Anomalous Amplification of Semidiurnal Tides along the Western Coast of Taiwan, Ocean Engineering, Vol. 28(9), 1171-1198.
5.Lin, S.F. and T.Y. Tang, S. Jan, C.J. Chen (2005), Taiwan strait current in winter. Continental Shelf Research , Vol. 25 , 1023-1042.
6.Liu, C.S. and S.Y. Liu, S. Lallemand, N.L. berg, D.L. Reed (1998), Digital Elevation Model Offshore Taiwan and Its Tectonic Implications. Terrestrial, Atmospheric and Oceanic Sciences, Vol. 9, 705-738.
7.Pedlosky, J. (1982), Geophysical fluid dynamics, Springer-Verlag, New-York, 624.
8.USNWSD (1977), U.S. Navy Marine climatic atlas of the world, Vol. Ⅱ, the Naval Weather Service Detachment, United States Naval Weather Service Detachment, Asheville, N.C.
9.Wang Y.H. and S. Jan, D.P. Wang (2003), Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999~2001). Estuarine, Coastal and Shelf Science, Vol. 57 , 193-199.
10.王玉懷 (1998),台灣海峽的潮汐特性。八十七年國科會海洋成果發表會論文摘要集,203-208。
11.王玉懷 (1999),TSNOW 現場觀測資料報告。台灣海峽海況即時預報模式計畫(TSNOW)研討會論文摘要集,國家海洋科學研究中心,16-21。
12.李汴軍、范揚洺、董東璟、高家俊 (2005),台灣海域潮汐空間均勻特性之研究。海洋工程學刊,第5卷第1期,67-83。
13.吳旭朕 (1986),台灣西海岸潮汐變化特性分析。國立成功大學水利及海洋工程研究所碩士論文。
14.孫湘平 等(1981),中國沿岸海洋水文氣象概況。科學出版社。
15.陳怡發、黃煌輝 (1990),台灣沿海潮汐資料之整理及分析。第五屆水利工程研討會論文集,1050-1063。
16.莊文傑 (2000),台灣海峽潮波協振盪之研究。國立台灣大學造船及海洋工程學研究所博士論文,共284頁。
17.莊文傑、江中權 (2005),台灣海峽的水深地形對潮波振盪之影響研究。ISBN 986-00-0877-9,初版,交通部運研所,共438頁。
18.詹森、王玉懷、邱朝聰 (2001),台灣海峽短期預報系統之發展。 海洋數值模式研討會,台北,台灣 1-1。
19.詹森 (2002),全方位探索台灣海峽。科學月刊,第三十三卷第二期,127-131。
20.劉文俊 (1996),台灣的潮汐。ISBN 957-97179-5-8,初版,自費出版,共283頁。
21.劉文俊 (1999),台灣的潮汐。ISBN 957-97334-9-X,第二版,自費出版,共150頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code