Responsive image
博碩士論文 etd-0626108-232343 詳細資訊
Title page for etd-0626108-232343
論文名稱
Title
藤壺陰莖長度與密度之關係研究
The study of barnacle’s penis length and density
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
57
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-26
繳交日期
Date of Submission
2008-06-26
關鍵字
Keywords
藤壺、陰莖長度
Barnacle, Penis Length
統計
Statistics
本論文已被瀏覽 5686 次,被下載 7
The thesis/dissertation has been browsed 5686 times, has been downloaded 7 times.
中文摘要
藤壺是所有生物中陰莖長度比例最大的,通常可達體長的數倍。為何會需要如此長的陰莖,這當然是因為藤壺本身不會移動,需要靠陰莖來接近配偶。可想見,陰莖愈長配偶數可能愈多,但另一方面在陰莖上的投資也愈高,藤壺是如何在配偶數和陰莖投資上得到平衡的?是不是有環境因子的影響?本研究探討個體陰莖長度是否可能因密度而調整,藉此來解釋種內陰莖長度的高度變異。研究對象紋藤壺(Amphibalanus amphitrite)、黑潮笠藤壺(Tetraclita kuroshioensis)及中華小笠藤壺(Tetraclitella chinensis)來自台南七股、東北角、墾丁和澎湖,首先測量每隻最近的鄰居距離(NND, Nearest Neighbor Distance)及形態指標(MI, Morphological Index)作為密度的指標,採集後測量第三與第六蔓足內肢長度作為個體大小的指標,並與藤壺陰莖長度做迴歸分析;另一方面,利用程式模擬藤壺在不同個體密度下及花費下的最適陰莖長度。實測結果發現,陰莖長度除了與體長有正相關之外,與MI也有正相關,也就是密度高時,陰莖也較長。程式模擬顯示增加陰莖長度所能增加的配偶數與所處密度無關,但顯示在個體間沒有精子競爭情況下,增加投資在陰莖長度以獲得更多的配偶數是有好處的;在有精子競爭情況下,陰莖長度越長對於個體而言是沒有好處的。此外,將不同的鄰居數當做處理組的實驗也發現,陰莖隨著附近個體數的增加而增長。在高密度下藤壺受擠壓,使得外型呈現底盤較小的圓柱狀;此時因空間限制(底盤較小)孵卵數目,減少在雌性功能的投資,使得雌雄同體的藤壺有多出的能量,可用來投資在雄性功\\能上,由於雄性個體間精子競爭機會不大,因此利用增加陰莖長度來增加可能配偶數,成為有效投資的唯一選項。

Abstract
Barnacles have the longest penis length, relative to body length, among all organisms. It is common for their penis length to be several times that of their bodies’. One reason is that barnacles are immobile and they rely on penis to reach mates. Thus the longer the penis the more mates there may be. How do barnacles balance mate numbers and penis cost? In this investigation, we studied the possible relationship between local densities and penis lengths of barnacles. Our goal is to explain the high intraspecific variation in penis lengths of barnacles. First, we measured the Nearest Neighbor Distance(NND) and Morphological Index (MI), both indices of local barnacle densities, of individuals of Amphibalanus amphitrite at Tainan, Tetraclita kuroshioensis at Keelung and Kenting, and Tetraclitella chinensis at Penghu. The cirrus lengths were used as indices of body sizes. A high percentage of penis length variation could not be explained by body sizes in these barnacles. In A. amphitrite and T. kuroshioensis, a positive correlation between residue penis length, i.e., after deducting the effect of body size, and MI was found. Assuming no sperm competition, we found, through simulation, that the optimal penis length, is not related to local densities, whereas in the presence of sperm competition, the longer penis length the lower fitness.In lab experiment, however, penis length of A. amphitrite was found to increase with increasing number of neighbors.Under high densities, the shell base become relatively small (high MI) and the shell becomes elongated. Investment in eggs may be limited by space available for brooding, thus more energy is available to invest in male functions. Under the assumption of no sperm competition, penis length remains the only option for effective investment. The preliminary result here suggests that the penis length of barnacles is plastic and is influenced by the local density. In Tetraclitella chinensis, no correlation between local densities and penis lengths was found; the very flat shell morphology of the species may have contributed to this phenomenon.
目次 Table of Contents
壹、前言………………………1
貳、材料與方法………………5
參、結果………………………11
肆、討論………………………14
參考文獻………………………18
附錄……………………………45
參考文獻 References
Anderson, D.T. 1994. Barnacles:structure, function, development and
evolution. Chapman et Hall, London.
Arnqvist, G. 1997. The evolution of animal genitalia distinguishing between
hypotheses by single species studies. Biological Journal of the Linnean Society
60:365–379.
Arnqvist, G., and L. Rowe. 1995. Sexual conflict and arms races between the sexes : a
morphological adaptation for control of mating in a female insect. Proceedings of
the Royal Society of London, Series B 261, 123–127.
Barnes, H., and H.T. Powell. 1950. The development, general morphology and
subsequent elimination of barnacle populations, Balanus crenatus and B.
balanoides, after heavy initial settlement. The Journal of Animal Ecology
19:175-9.
Barnes, H. and D. J. Crisp. 1956. Evidence of self-fertilization in certain species of
barnacle. Journal of the Marine Biological Association of the United Kingdom
35:631–639.
Barnes, M. 1992. The reproductive periods and condition of the penis in several
species of common cirripedes. Oceanographyand Marine Biology: An Annual
Review 30:483–525.
Bateman, A. J. 1948. Intrasexual selection in Drosophila melanogaster. Heredity
2:349–368.
Bertness, M.D. 1989. Intraspecific competition and facilitation in a northern
acorn barnacle population. Ecology 70: 257–268.
Birkhead, T. R., and F. M. Hunter. 1990. Mechanisms of sperm competition. Trends
in Ecology and Evolution 5:48–52.
Calvo, M., and J. Templado. 2005. Reproduction and sex reversal of the solitary
vermetid gastropod Serpulorbis arenarius. Marine Biology 146 :963–973.
Charnov, E. L. 1982. The Theory of Sex Allocation. Princeton Univ. Press,
Princeton,NJ.
Charnov, E. L. 1987. Sexuality and hemaphroditism in barnacles:a natural selection
approach. In: Southward, A. J. (ed.), Barnacle biology. A.A. Balkema, pp. 89–
103.
Charnov, E. L. 1996. Sperm competition and sex allocation in simultaneous
hermaphrodites. Evolutionary Ecology 10: 457–462.
Clark, P. J., and F. C. Evans. 1954. Distance to nearest neighbor as a measure of
spatial relationships in populations. Ecology 35: 445-453.
Connell, J. H. 1980. Diversity and the coevolution of competitors,or the ghost of
competition past. Oikos 35: 131–138.
Crisp, DJ. 1954. The breeding of Balanus porcatus (da Costa) in the Irish Sea. Journal of the Marine Biological Association of the United Kingdom. 33: 473-496.
Darwin, C.1854. A monograph of the subcalass Cirripedia with figures of all species.
The Balanidae, the Verrucidae, etc. Ray Society, London.
Dixson, A. F., and N. I. Mundy. 1994. Sexual behavior, sexual swelling and penile
evolution in chimpanzees (Pan troglodytes). Archives of Sexual Behavior 23:
267–280.
Eberhard, W. G. 1985. Sexual Selection and Animal Genitalia. Cambridge, Mass : Harvard University Press.
Eberhard, W. G. 1990. Animal genitalia and female choice. American Scientist 78:
134–141.
Eberhard, W. G. 1993. Evaluating models of sexual selection : genitalia as a test
case. American Scientist 142:564–571.
He, Y., and T. Miyata. 1997. Variation in sperm number in relation to larval crowding
and spermatophore size in the armyworm, Pseudaletia separata. Ecological
Entomology 22:41–46.
Hills, J. M., and J. C. Thomason. 1998a. The effect of scales of surface roughness on
the settlement of barnacle (Semibalanus balanoides) cyprids. Biofouling 12: 57–
69.
Hills, J. M., and J. C. Thomason. 1998b. On the effect of tile size and surface texture
on recruitment pattern and density of the barnacle, Semibalanus balanoides.
Biofouling 13:31–50.
Hills, J. M., J. C. Thomason, and J. Muhl. 1998. A precise and accurate technique for
the manufacture of complex threedimensional surfaces. Biofouling 13: 125–136.
Hills, J. M., J. C. Thomason, and J. Muhl. 1999. Settlement of barnacle larvae is
governed by Euclidean and not fractal surface characteristics. Functional
Ecology 13:868–875.
Hills, J. M., and J. C. Thomason, 2003a: The ‘‘ghost of settlement past’’ determines
mortality and fecundity in the barnacle Semibalanus balanoides. Oikos 101:
529–538.
Landau, M. 1976. A comment on self-fertilization Balanus eburneus Gould(Cirrpedia,
Thoracica). Crustaceana 30:105-106.
Lloyd, J. E. 1979. Mating behavior and natural selection. Florida Entomologist 62:
17–23.
Klepal, W., and H. Barnes. 1974. Regeneration of the penis in Balanus balanoides
(L.). Journal of Experimental Marine Biology and Ecology 10:243-265.
Marchinko, K. B. 2003. Dramatic phenotypic plasticity in barnacle legs (Balanus
glandula Darwin): magnitude, age dependence, and speed of response. Evolution
57: 1281–1290.
Mayr, E. 1963. Animal Species and Evolution . Harvard University Press.
Miron, G., E. Bourget, and P. Archambault. 1996. Scale of observation and distribution of adult conspecifics: their influence in assessing passive and active settlement mechanisms in the barnacle Balanus crenatus. Journal of Experimental Marine Biology and Ecology 22:137-158.
Miron, G., E. Bourget, and P. Archambault. 1996. Scale of observation and
distribution of adult conspecific: their influence in assessing passive and active
settlement mechanisms in the barnacle Balanus crenatus (Brugière). Journal of
Experimental Marine Biology and Ecology 201:137-158.
Noda, T. 2004. Large-scale variability in recruitment of the barnacle Semibalanus
cariosus: its cause and effects on the population density and predator. Marine
Ecology Progress Series 278:241-252.
Puurtinen, M., and V. Kaitala. 2002. Mate-search efficiency can determine the
evolution of separate sexes and the stability of hermaphroditism in animals. The
American Naturalist 160:645–660.
Raimondi, P. T., and J. E. Martin. 1991. Evidence that mating groups size affects
allocation of reproductive resources in a simultaneous hermaphrodite. The
American Naturalist 138:1206–1217.
Rice, W. R. 1996. Sexually antagonistic male adaptation triggered by experimental
arrest of female evolution. Nature 381:232–234.
Scheuwimmer, A. 1979. Sperm transfer in the sessile gastropod Serpulorbis
(Prosobranchia: Vermetidae). Marine Ecology Progress Series 1:65–70.
Shapiro, A. M., and A. H. Porter. 1989. The lock-and-key hypothesis : evolutionary
and biosystematic interpretation of insect genitalia. Annual Review 34:231–245.
Short, R. V. 1979. Sexual selection and its component parts, somatic and genital
selection, as illustrated by man and the great apes. Advanced Study of Behaviour
9: 131-158.
Soong, K. Y., and C. P. Chen. 1981. Settling of oysters (Crassostrea gigas Thunberg)
and barnacle (balanus amphitrite albicostatus Pilsbry) in shun-sun. Report of the
institute of fishery biology of ministry of economic affairs and national Taiwan
university 3:103-112.
Tan, G.N., F. R. Govedich, and M. Burd. 2004. Social group size, potential
sperm competition and reproductive investment in a hermaphroditic leech,
Helobdella papillornata (Euhirudinea: Glossiphoniidae). Journal of
Evolutionary Biology 17: 574-580.
Thomason, J. C., J. M. Hills, and P. Mapson. 2000. The consequences of seasonal
reproductive strategies for the interpretation of settlement trials. Biofouling 16:
171–379.
Thornhill, R. 1983. Cryptic female choice and its implications in the scorpionfly
Harpobittacus nigriceps. The American Naturalist 122:765–788.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.36.10
論文開放下載的時間是 校外不公開

Your IP address is 3.145.36.10
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code