Responsive image
博碩士論文 etd-0626109-115027 詳細資訊
Title page for etd-0626109-115027
論文名稱
Title
錫奈米點非揮發性記憶體元件之製程及特性分析
Fabrications and Characteristics of Nonvolatile Memory Devices with Sn Nanocrystals Embedded in MIS Structure
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-05-13
繳交日期
Date of Submission
2009-06-26
關鍵字
Keywords
非揮發性記憶體、氧化錫、錫
Tin, Sn, SnO, Nonvolatile memory device, Nanocrystals
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
非揮發性記憶體(NVM)在元件尺寸持續微縮下的需求為高密度記憶單元、低功率損耗、快速讀寫操作、以及良好的可靠度(Reliability)。傳統的非揮發性記憶體是利用複晶矽浮停閘(floating gate)作為載子儲存的單元,而在元件尺寸持續微縮下將面臨一些瓶頸。在操作過程中如果穿隧氧化層產生漏電路徑會造成所有儲存電荷流失回到矽基板,所以在資料保存時間(Retention)和耐操度(Endurance)的考量下,難以微縮穿隧氧化層的厚度。非揮發性奈米點記憶體被提出希望可取代傳統浮動閘極記憶體,利用半導體或金屬奈米點作為電荷儲存的單元,由於奈米點可視為電荷儲存層中彼此分離的儲存點,可以減少穿隧氧化層的厚度,增進小尺寸記憶體元件多次操作下的資料儲存能力,而不損失可靠性,進而降低操作電壓及操作速度增快。近年來發展許多方法來形成奈米點,大多數的方法都需長時間高溫的熱製程,此步驟會影響現階段半導體製程中的熱預算和產能。而超臨界二氧化碳(supercritical carbon dioxide, SCCO2)已有實驗證明能修補介電層的處理,且在高壓環境下降低反應活化能,因此評估其有製作奈米點的潛力。
本文中為了探討使用低溫超臨界二氧化碳成長奈米點技術的可行性,因此選用低熔點金屬錫(Sn)作為實驗材料,而為確定錫是否能成功製作奈米點元件,故先使用一般較成熟的熱退火技術嘗試製作。我們使用一個快速熱退火製程來增進奈米點的結晶性(crystalline)和記憶體的可靠度,熱處理可以減少奈米點周圍氧化矽中的缺陷(defect)。首先在矽晶圓穿隧氧化層上沈積錫與氧化矽(SiO2)共鍍的薄膜,在後續不同溫度的熱處理狀況下使錫奈米點析出,並分析其電性及材料性質的變化。另外又比較沈積錫與矽(Si)共鍍的薄膜,一樣在不同溫度熱處理下析出錫奈米點,研究儲存層中不同錫含量記憶效應以及電性分析。
之後選擇了錫與氧化矽共鍍的薄膜嘗試做超臨界二氧化碳的處理,製成元件後探討奈米點的記憶窗口以及電性做討論。由於這是種新穎的製作方式,詳細的製程機制與原理、參數改善與性能提升還需後續更深入的探討。
Abstract
Current requirements of nonvolatile memory (NVM) are the high density cells, low-power consumption, high-speed operation and good reliability for the scaling down devices. However, all of the charges stored in the floating gate will leak into the substrate if the tunnel oxide has a leakage path in the conventional NVMs. Therefore, the tunnel oxide thickness is difficult to scale down in terms of charge retention and endurance. The nanocrystal nonvolatile memories are one of promising substitution, because the discrete storage nodes as the charge storage media have been effectively improve data retention under endurance test for the scaling down device. Many methods have been developed recently for the formation of nanocrystals. Generally, most methods need thermal treatment with high temperature and long duration. This procedure will influence thermal budget and throughput in current manufacture technology of semiconductor industry. And supercritical carbon dioxide (SCCO2) has been researched to the passivation of dielectric and reducing the activation energy. The research estimates SCCO2 is potential to form nanocrystals for these reason.
This research is to discuss the feasibility of fabricating nanocrystal NVMs device with low temperature SCCO2. The low melting point metal material Sn is used for the attempts. In order to check if Sn can be used for fabricating nanocrystal NVMs device, the research selects the conventional thermal annealing method first. It uses rapid thermal annealing to improve the crystalline of nanocrystals and reliability of the memory device. Compare to different Sn containment or chemistry and different process, analyze the electric characteristics and materials chemistry.
At last, select the Sn and SiO2 co-sputtering film to try the SCCO2 process and analyze these characteristics as well. Due to the novel technology, many physical mechanism and improvement of properties will be discuss following.
目次 Table of Contents
Chinese Abstract…………………………………………………….....Ⅰ
English Abstract………………………………………………………..Ⅱ
Contents…………………………………………………………...……Ⅲ
Figure Captions…………………………………………………….......Ⅴ
Chapter 1 Introduction
1.1 Overview of Nonvolatile Memory……………………………………...1
Chapter 2 Basic Principle of Nonvolatile Memory
2.1 Introduction.............................................................................................9
2.2 Basic Program/Erase Mechanisms........................................................10
2.2.1 Energy band diagram during program and erase operation…....10
2.2.2 Carrier injection mechanisms………………………...………...11
2.3 Basic Reliability of Nonvolatile Memory.............................................13
2.3.1 Retention……………………………………………………….14
2.3.2 Endurance……………………………………………………....14
2.4 Basic Physical Characteristic of Nanocrystal NVM.............................15
2.4.1 Quantum Confinement Effect………………………….……....15
2.4.2 Coulomb Blockade Effect………………………………...……15
2.5 Supercritical Carbon Dioxide (SCCO2)………………………………16
Chapter 3 Attempt to Fabricate Sn-NCs Nonvolatile Memory
3.1 Motivation…………………………………………………………….22
3.2 Experiment Procedures………………………………………………..22
3.3 Results and Discussion………………………………………………..23
3.4 Conclusions…………………………………………………………...26
Chapter 4 Advanced Fabrication by Tin Silicide (SnSi) Chemistry
4.1 Motivation…………………………………………………………...33
4.2 Experiment Procedures………………………………………………..33
4.3 Results and Discussion………………………………………………..34
4.4 Conclusions…………………………………………………………36
Chapter 5 Another Study of Reducing Sn Containment by Sandwich Structure at Storage Layer
5.1 Motivation…………………………………………………………….43
5.2 Experiment Procedures………………………………………………..43
5.3 Results and Discussion………………………………………………..44
5.4 Conclusions…………………………………………………………...46
Chapter 6 The SCCO2 Method to Fabricate Nanocrystal NVMs
6.1 Motivation…………………………………………………………….54
6.2 Experiment Procedures………………………………………………..54
6.3 Results and Discussion………………………………………………..55
6.4 Conclusions…………………………………………………………...57
Chapter 7 The Leakage Mechanism of Storage Layer with Sn Core-SnOx Shell Structure………………...……………….….62
7.1 Phenomenon………………………...………………………………...62
7.2 View of Energy Band……………...………………………………….62
7.3 View of Material Defects…………….………………………………..63
Chapter 2 Conclusions………………………………………………………..68
References…………………………………………………………………………69
參考文獻 References
[1] S. Lai, Future Trends of Nonvolatile Memory Technology, December 2001.
[2] S. Aritome, IEEE IEDM Tech. Dig., 2000, p.763.
[3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells—An overview” Proc. IEEE, vol. 85, pp. 1248–1271, Aug. 1997.
[4] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, 46, 1288 (1967).
[5] J. D. Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transaction on Nanotechnology, 1, 72 (2002).
[6] M. H. White, Y. Yang, A. Purwar, and M. L. French, ”A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, 52 (1996).
[7] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., 521 (1995).
[8] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and Doug Buchanan, IEDM Tech. Dig., p.521 (1995)
[9] J De Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotechnol, 2002.
[10] Y. Shi et al., in Proceedings of the First Joint Symposium on Opto- and Microelectronic Devices and Circuits, 2000, pp. 142–145.
[11] H. G. Yang, Y. Shi, S. L. Gu, B. Shen, P. Han, R. Zhang, and Y. D. Zhang, Microelectron. J. 34, 71 (2003).
[12] Chungho Lee, Udayan Ganguly, Venkat Narayanan, and Tuo-Hung Hou, “Asymmetric Electric Field Enhancement in Nanocrystal Memories”, IEEE Eelectron Electron Letters, vol. 26, NO. 12, DECEMBER 2005.
[13] Shan Tang, Chuanbin Mao, Yueran Liu, and Sanjay K. Banerjee “Protein-Mediated Nanocrystal Assembly for Flash Memory Fabrication”, IEEE Trans. on Electron Letters, vol. 54, no. 3, March 2007.
[14] Chih-Yuan and Chin-Chieh Yeh, “Advenced Non-Volatile Memory Devices with Nano-Technology”, Invited Talk for 15th International Conference on Ion Implantation Technology, 2004.
[15] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
[16] T. Ohnakado, H. Onoda, O. Sakamoto, K. Hayashi, N. Nishioka, H. Takada, K. Sugahara, N. Ajika and S. Satoh, “Device characteristics of 0.35 m P -channel DINOR flash memory using band-to-band tunneling-induced hot electron (BBHE) programming”, IEEE Trans. Electron Devices, Vol. 46, pp. 1866-1871, 1999.
[17] J. Bu, M. H. White, Solid-State Electronics., 45, 113 (2001)
[18] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, IEDM Tech. Dig., p.19 (1993)
[19] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Transactions of
Electron Devices., 49, 1606 (2002)
[20] J. Moll, Physics of Semiconductors. New York: McGraw-Hill, (1964)
[21] M. Lezlinger and E. H. Snow, J. Appl. Phys., 40, 278 (1969)
[22] Christer Sevensson and Ingemar Lundstrom, J. Appl. Phys., 44, 4657 (1973)
[23] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
[24] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, “Quantum confinement ingermanium nanocrystals,” Applied Physics Letters, vol.77, pp.1182-1184 (2000)
[25] T. Takagahara and K.Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect- gap materials,” Phys. Rev. B, Vol. 46, p. 15578, 1992.
[26] Anri Nakajima, Toshiro Futatsugi, Naoto Horiguchi, Hiroshi Nakao, and Naoki Yokoyama, “Single Electron Charging of Sn Nanocrystals in Thin SiO, Film Formed by Low Energy Ion Implantation ” Electron Devices Meeting, 1997. IEDM '97. Technical Digest., International, 159-162(1997)
[27] Y. Lei, P. Mock, T. Topuria, and N. D. Browning, R. Ragan, K. S. Min, and H. A. Atwater, “Void-mediated formation of Sn quantum dots in a Si matrix” Applied Physics Letters Vol. 82, No. 24, (2003)
[28] Felipe Kremer, João M. J. Lopes,a_ and Fernando C. Zawislak, Paulo F. P. Fichtnerb, “Low temperature aging effects on the formation of Sn nanoclusters in SiO2 /Si films and interfaces ” Applied Physics Letters 91, 083102 (2007)
[29] J. Szuber, G. Czempik, R. Larciprete, B. Adamowicz, “The comparative XPS and PYS studies of SnO thin films prepared by L-CVD technique and exposed to oxygen and hydrogen” Sensors and Actuators B 70_2000.177–181
[30] Shujuan Huang, Eun-Chel Cho, Gavin Conibeer, and Martin A. Green, “Fabrication and characterization of tin-based nanocrystals” Journal of Applied Physics 102, 114304(2007)
[31] Gavin Conibeer, Martin Green, Eun-Chel Cho, Dirk König, Young-Hyun Cho, Thipwan Fangsuwannarak, Giuseppe Scardera, Edwin Pink, Yidan Huang, Tom Puzzer, Shujuan Huang, Dengyuan Song, Chris Flynn, Sangwook Park, Xiaojing Hao, Daniel Mansfield, “Silicon quantum dot nanostructures for tandem photovoltaic cells ” Thin Solid Films 516 (2008) 6748–6756
[32] K Tennakone, I R M Kottegoda, L A A De Silva and V P S Perera, “The possibility of ballistic electron transport in dye-sensitized semiconductor nanocrystalline particle aggregates” Semicond. Sci. Technol. 14 (1999) 975–978. Printed in the UK
[33] T. D. Hatcharda, and J. R. Dahna, “Study of the Electrochemical Performance of Sputtered Si1-xSnx Films” Journal of The Electrochemical Society, 151 (10) A1628 -A1635 (2004)
[34] Kyu Sung Min and Harry A. Atwater, “Ultrathin pseudomorphic Sn/Si and SnxSi1-x/Si heterostructures” Applied Physics Letters Vol. 72, No. 15, (1998)
[35] Z. W. Chen,a_ J. K. L. Lai, and C. H. Shek , “Quantum dot formation and dynamic scaling behavior of SnO2 nanocrystals induced by pulsed delivery ” Applied Physics Letters 88, 033115 (2006)
[36] N. Chiodini, A. Paleari, D. DiMartino, and G. Spinolo, “SnO2 nanocrystals in SiO2 : A wide-band-gap quantum-dot system” Applied Physics Letters Vol.81, No. 9, (2002)
[37] Matthias Batzill, Ulrike Diebold, “The surface and materials science of tin oxide” Progress in Surface Science 79 (2005) 47–154
[38] V.M. Jim6nez, J.A. Mejias, J.P. Espinds, A.R. Gonzfilez-Elipe, “Interface effects for metal oxide thin films deposited on another metal oxide II. SnO2 deposited on SiO2” Surface Science 366 (1996) 545 555
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.216.239.46
論文開放下載的時間是 校外不公開

Your IP address is 18.216.239.46
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code