Responsive image
博碩士論文 etd-0626111-171029 詳細資訊
Title page for etd-0626111-171029
論文名稱
Title
應用SSSC於電力市場之碳交易評估
Assessment of Applying SSSC to Power Market for Carbon Trading
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
126
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-22
繳交日期
Date of Submission
2011-06-26
關鍵字
Keywords
碳交易、污染排放、靜態同步串聯補償器、最佳化電力潮流、多重選擇粒子群最佳化演算法、機組排程、電力代輸
Optimal Power Flow, Static Synchronous Series Compensator, Emission, Multiple Particle Swarm Optimization, Carbon Trading, Unit Commitment, Power Wheeling
統計
Statistics
本論文已被瀏覽 5733 次,被下載 0
The thesis/dissertation has been browsed 5733 times, has been downloaded 0 times.
中文摘要
近年來環保意識高漲,使得電力調度模式不再是以經濟為導向,故本論文提出於電力與碳交易市場之情況下,以最大化利潤為目標,並應用粒子群最佳化演算法(Particle Swarm Optimization, PSO)求解二十四小時機組排程問題。本論文假設一發電業者擁有三個獨立區域所組成之互聯電網,進行二十四小時之機組排程調度,並結合最佳化電力潮流之計算,以達到最佳的調度策略。在求解機組排程問題時,除了考慮供需平衡、機組發電量限制、發電機升降載率限制與最小開關機時間限制之外,還包含負載潮流、匯流排電壓限制與傳輸線容量限制。另本論文提出運用靜態同步串聯補償器(Static Synchronous Series Compensator, SSSC)之等效電路模型,推導出以電流注入法(Equivalent Current Injection, ECI)為基礎之靜態同步串聯補償器新模型,並將其整合於以電流注入為基礎之最佳化電力潮流方程式,裝設於各獨立區域之間的互聯線路,以達到控制系統之電力潮流,產生對污染排放量的影響。為了改善粒子群最佳化演算法陷入局部最佳解之問題,本論文提出使用多重選擇粒子群最佳化演算法(Multiple Particle Swarm Optimization, MPSO),具有跳脫局部最佳解之能力,使其能快速且精確獲得整體最佳解,更不失粒子群最佳化演算法求解速度快之優點。於考量交易市場的情況下,藉由裝設靜態同步串聯補償器的影響,並參考二十四小時電力與碳之價格與需量預測資料,經由買賣電力與碳權額度以及代輸費用計價的交易行為,進而達到獲取最大利潤之目標,作為是否投入交易市場之依據。
Abstract
In recent year, the awareness of environmental protection has made the power dispatch problem not necessarily economy-oriented. This thesis proposed the application of Particle Swarm Optimization (PSO) algorithm to solve the Unit Commitment (UC) problem for 24 hours with maximum profit in the power and carbon market. Optimal Power Flow (OPF) is used to solve the UC problem for the interconnected power network that is comprised of three independent areas to optimize the dispatching strategy. The UC problem must satisfy the constraints of the load demand, generating limits, minimum up/down time, ramp rate limits, and also the limits of power flow, buses voltage and transmission line capacity. The other objective of this thesis is to employ the Static Synchronous Series Compensator (SSSC) to integrate with OPF based on Equivalent Current Injection (ECI) power flow model, and install it at interconnected lines between each independent area controlling the power flow to reduce emission. In order to avoid the local optimality problem, this thesis proposed the utilization of the Multiple Particle Swarm Optimization (MPSO), which can quickly reach the optimal solution with a better performance and accuracy. The Independent Power Producer (IPP) can get the maximum profit with installed SSSC from the power and carbon trading with the calculation of power wheeling expense and carbon forecasting data. Furthermore, it can also assess the need of participating in the trading market or not.
目次 Table of Contents
摘要.......................................................................................................................i
Abstract ...............................................................................................................ii
目錄....................................................................................................................iii
圖次.....................................................................................................................vi
表次.....................................................................................................................ix

第一章 緒論........................................................................................................1
1.1 研究背景與動機...........................................................................................1
1.2 研究方法與目的...........................................................................................3
1.3 論文架構.......................................................................................................4

第二章 負載潮流與靜態同步串聯補償器........................................................6
2.1 前言...............................................................................................................6
2.2 電流注入法負載潮流模型...........................................................................7
2.2.1 具常數亞可比矩陣之負載潮流模型推導........................................7
2.2.2 電壓控制匯流排模型推導..............................................................11
2.3 靜態同步串聯補償器模型.........................................................................15
2.3.1 靜態同步串聯補償器之原理與特性..............................................16
2.3.2 靜態同步串聯補償器之電壓源型轉換器數學模型......................23
2.3.3 結合靜態同步串聯補償器於等效電流注入法之模型推導..........25
2.3.4 靜態同步串聯補償器裝設線路原則..............................................28


第三章 整合靜態同步串聯補償器之碳交易與電力市場..............................30
3.1前言..............................................................................................................30
3.2碳交易與電力市場......................................................................................30
3.2.1 碳交易市場架構..............................................................................30
3.2.2 電力市場架構..................................................................................33
3.2.3 代輸費用之計價..............................................................................37
3.3 問題描述與數學模型.................................................................................41
3.3.1 傳統機組排程問題..........................................................................41
3.3.2 整合靜態同步串聯補償器之機組排程問題..................................48

第四章 多重選擇粒子群最佳化演算法之探討..............................................53
4.1 前言.............................................................................................................53
4.2 基因演算法.................................................................................................53
4.3 進化規劃演算法.........................................................................................57
4.4 粒子群最佳化演算法.................................................................................60
4.5 多重選擇粒子群最佳化演算法.................................................................64
4.6 應用MPSO於機組排程問題之求解流程.................................................68

第五章 系統測試與結果分析..........................................................................71
5.1 前言.............................................................................................................71
5.2 測試一:MPSO強健性測試.......................................................................73
5.3 測試二:傳統機組排程測試.......................................................................75
5.4 測試三:結合電力與碳交易市場之機組排程測試...................................79
5.5 測試四:整合SSSC之電力與碳交易市場測試........................................92

第六章 結論與未來發展方向........................................................................106
6.1 結論...........................................................................................................106
6.2 未來發展方向...........................................................................................107

參考文獻..........................................................................................................109
參考文獻 References
[1] C. B. Somuah, and N. Khunaizi, “Application of linear programming redispatch technique to dynamic generation allocation,” IEEE Transactions on Power Systems, Vol. 5, No. 1, pp. 20-26, 1990.
[2] F. Li, R. Morgan, and D. Williams, “Towards more cost saving under stricter ramping rate constraints of dynamic economic dispatch problems - a genetic based approach,” Proceedings of the IEE Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, Glasgow, pp. 221-225, 1997.
[3] R. H. Liang, “A neural-based redispatch approach to dynamic generation allocation,” IEEE Transactions on Power Systems, Vol. 14, No. 4, pp. 1388-1393, 1999.
[4] P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, “A hybrid EP and SQP for dynamic economic dispatch with nonsmooth fuel cost function,” IEEE Transactions on Power Systems, Vol. 17, No. 2, pp. 411-416, 2002.
[5] W. Ongsakul, and N. Ruangpayoongsak, “Constrained dynamic economic dispatch by simulated annealing/genetic algorithms,” Proceedings of the International Conference on 22nd IEEE Power Engineering Society, Sydney, pp. 207-212, 2001.
[6] R. J. Thomas, “Market Monitoring and Mitigation: Impacts on System Reliability,” IEEE Power Engineering Society General Meeting, Vol. 3, July 2003.
[7] W. M. Lin and J. H. Teng, “Phase-Decoupled Load Flow Method for Radial and Weakly-Mesh Distribution Networks,” IEE Proceedings-Generation, Transmission and Distribution, Vol. 143, No. 1, pp. 39-42, January 1996.
[8] W. M. Lin, Yuh-Sheng Su, Hong-Chan Chin, and J. H. Teng, “Three-Phase Unbalanced Distribution Power Flow Solutions With Minimum Data Preparation,” IEEE Transactions on Power Systems, Vol. 14, No. 3, pp. 1178-1183, Aug. 1999.
[9] 詹東昇,“應用以電流為基礎的網路模型於輸電系統負載潮流之研究”,碩士論文,國立中山大學電機系研究所,民國八十八年六月。
[10] W. L. Fang and H. W. Ngan, “Optimising location of unified power flow controllers using the method of augmented Lagrange multipliers,” IEE Proceedings - Generation, Transmission and Distribution, Vol. 146, No. 5, September 1999.
[11] 莊政宏, “應用彈性交流輸電技術改善電力系統的區域間振盪,” 碩士論文, 國立台灣大學電機工程學研究所, 民國九十年.
[12] K. K. Sen, “SSSC-Static Synchronous Series Compensator : Theory, Modeling, and Applications,” IEEE Transactions on Power Delivery, Vol. 13, No. 1, January 1998.
[13] 陳曦照,”電業自由化環境下競價為基礎之電力調度及發電業競標策略之研
究”,博士論文,國立中山大學電機系研究所,民國九十年五月。
[14] L. Gyugyi, C. D. Schauder, and K. K. Sen, “Static synchronous series compensator : a solid-state approach to the series compensation of transmission lines,” IEEE Transactions on Power Delivery, Vol. 12, No. 1, pp. 406-417, Jan. 1997.
[15] 劉祖閔,“電力交易市場模擬”,碩士論文,國立中山大學電機系研究所,民國八十七年六月。
[16] 金立明,”雙向合約電力調度及彈性交流傳輸系統應用之研究”,碩士論文,國立中山大學電機系研究所,民國八十九年六月。
[17] A. K. David, “Dispatch methodologies for open access transmission systems,” IEEE Transactions on Power Systems, Vol.13, No. 1, pp. 46-53, February. 1998.
[18] 王京明,”台灣電力系統電力代輸之研究(期末報告)”,財團法人中華經濟研究院,民國八十六年六月。
[19] D. Shirmohamadi, et al, “Evaluation of transmission network capacity use for wheeling transactions,” IEEE Transactions on Power Systems, Vol. 4, No. 4, pp. 1405-1413, Nov. 1989.
[20] J. Bialek, “Allocation of transmission supplementary charge to real and reactive loads,” IEEE Transactions on Power Systems, Vol. 13, No. 3, pp. 749-754, Aug. 1998.
[21] J. H. Holland, “Adaptation in Natural and Artificial Systems,” The University of Michigan Press, 1975.
[22] R. Eberhart, and J. Kennedy, “ A new optimizer using particle swarm theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp.39-43, Japan, Oct. 1995.
[23] H. T. Yang, P. C. Yang, C. L. Huang, “Evolutionary programming based economic dispatch for units with non-smooth fuel cost functions,” IEEE Transactions on Power Systems, Vol. 11, No. 1, pp. 112-118, Feb. 1996.
[24] 李元輝,“結合碳交易以價格為導向之機組排程研究”,碩士論文,國立中山大學電機系研究所,民國九十八年六月。
[25] 廖基宏,“應用電力追蹤探討電力代輸成本”,碩士論文,國立中正大學電機工程研究所,民國八十九年七月。
[26] D. Kirschen and G. Strbac, “Fundamentals of Power System Economics,” John Wiley&Sons, Ltd. 2004.
[27] 涂嘉勝,“蟑螂演算法的發展與應用”,碩士論文,正修科技大學電機工程研究所,民國九十六年六月。
[28] 黃琮暉,“ASP技術於電力交易與競爭系統研究”,碩士論文,國立中山大學電機工程研究所,民國九十二年六月。
[29] A. Zhang, J. Zhang, J. Shang, and J. Qin, “Security and economic dispatch of power system with environmental consideration,” IEEE Power and Energy Society General Meeting, pp. 1-6, July 2009.
[30] S. R. Huang, K. Y. Hung, and Y. H. Chen, “Emission control research of spot markets for separate generation systems,” IEE Proceedings - Generation, Transmission, and Distribution, Vol. 147, No. 6, pp. 425-431, Nov. 2000.
[31] I. Kockar, “Unit commitment for combined pool/bilateral markets with emissions trading,” IEEE Power and Energy Society General Meeting, pp. 1-9, July 2008.
[32] D. Bhagwan Das and C. Patvardhan, “Useful multi-objective hybrid evolutionary approach to optimal power flow,” IEE Proceedings - Generation, Transmission and Distribution, Vol. 150, No. 3, pp. 275-282, May 2003.
[33] I. J. Raglend and N. P. Padhy, “Solutions to practical unit commitment problems with operational, power flow and environmental constraints,” IEEE Power Engineering Society General Meeting, 2006.
[34] Y. Chen and L. Wang, “A Power Market Model with Renewable Portfolio Standards, Green Pricing and GHG Emissions Trading Programs,” IEEE Energy 2030 Conference, pp. 1-7, Nov. 2008.
[35] S. Kamel, M. Abdel-Akher, and M. K. El-Nemr, “Implementation of SSSC model in the Newton-Raphson power flow formulation using current injections,” International Universities Power Engineering Conference, Aug. 2010.
[36] K. K. Swarnkar, S. Wadhwani, A. K. Wadhwani, “Optimal Power Flow of large distribution system solution for Combined Economic Emission Dispatch Problem using Partical Swarm Optimization,” International Conference on Power Systems, Dec. 2009.
[37] T. Yong, R. Lasseter, “Optimal power flow formulation in market of retail wheeling,” IEEE Power Engineering Society 1999 Winter Meeting, Vol. 1, pp. 394-398, Feb. 1999.
[38] Z. L. Gaing, “Constrained optimal power flow by mixed-integer particle swarm optimization,” IEEE Power Engineering Society General Meeting, pp. 243-250, June 2005.
[39] K. S. Verma, H. O. Gupta, “Impact on real and reactive power pricing in open power market using unified power flow controller,” IEEE Transactions on Power Systems, Vol. 21, No. 1, pp. 365-371, Feb. 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.150.89
論文開放下載的時間是 校外不公開

Your IP address is 3.17.150.89
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code