Responsive image
博碩士論文 etd-0626112-182739 詳細資訊
Title page for etd-0626112-182739
論文名稱
Title
添加不同比例之生質柴油及固定氫氧混合氣對柴油引 擎多環芳香烴排放特徵之研究
Emission Characteristics of Polycyclic Aromatic Hydrocarbons from a Heavy-Duty Diesel Engine mixed with constant H2/O2 and diesel/Biodiesel blends
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
147
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-13
繳交日期
Date of Submission
2012-06-26
關鍵字
Keywords
年排放量、排放因子、柴油引擎、生質柴油、多環芳香烴
Annual emission, Emission Factor, Diesel Engine, PAHs, Biodiesel
統計
Statistics
本論文已被瀏覽 5693 次,被下載 411
The thesis/dissertation has been browsed 5693 times, has been downloaded 411 times.
中文摘要
本研究固定氫氧進氣量60 L/min,並以基礎石化柴油(Premium
diesel fuel, PDF)及分別添加生質柴油5% (B5)、10% (B10)、20% (B20)
及30% (B30),進行柴油引擎排放多環芳香烴(PAHs)特徵及生質柴油
對傳統污染物減量之研究。研究採穩態循環,引擎運轉轉速為1,600
rpm 與扭矩為145 Nm,對引擎所排放廢氣中進行21 種PAHs 採樣及
分析。
柴油引擎於PDF排放總PAHs濃度為22.42 μg/m3,分別添加生質
柴油B5、B10、B20 及B30,其總PAHs排放濃度分別為20.11、17.28、
13.45 及13.13 μg/m3;排放係數分別為1334.53、1198.82、986.05、
771.93 及748.82 μg/bhp-hr;在添加生質柴油後削減率分別為10.3、
22.9、40.0 及41.4%,顯示添加不同比例之生質柴油能有效的降低
PAHs濃度。
在排放傳統污染物方面,柴油引擎固定氫氧進氣量為60 L/min
時,添加不同比例生質柴油之CO、THC及排放因子會隨著生質柴油
添加量增加而降低;反之,CO2、NOx及PM排放因子會隨著生質柴油
添加量增加而上升。
在PAHs年排放量方面,PDF及添加生質柴油B5、B10、B20 及B30
之總PAHs年排放量,分別為140.05、126.92、105.21、81.97 及79.86
tons/year,添加生質柴油後總PAHs之年排放量下降,可知添加生質柴
油可有效的降低PAHs的年排放量。而在BaPeq之年排放量上,PDF及
添加不同比例之生質柴油之年排放量分別為5.88、5.62、3.50、3.03
及2.83 tons/year,可知生質柴油可降低BaPeq之年排放量。
Abstract
This study investigated emission characteristics of polycyclic
aromatic hydrocarbons (PAHs) and reductions of regulated harmful
matters using Premium diesel fuel (PDF), mixed with a 60 L/min flow
rate of H2/O2 mixture and blended with biodiesel 5% (B5), 10% (B10),
20% (B20), and 30% (B30). The diesel engine was operated at
steady-state condition of 1,600 rpm, with torque and power outputs of
145 Nm and 24.5 kW, respectively.
Measured results show that the emission concentrations of total
PAHs were 22.42, 20.11, 17.28, 13.45, and 13.13 μg/m3 for B0, B5, B10,
B20, and B30, respectively, with corresponding emission factors of total
PAHs being 1334.53, 1198.82, 986.05, 771.93, and 748.82 μg/bhp-hr, and
reductions of total PAHs being 10.3, 22.9, 40.0, and 41.4%. The results
indicated that using biodiesel can reduce PAH emissions. However, the
emission factors of carbon monoxide (CO) and total hydrocarbons (THC)
were decreased by adding biodiesel, but those of carbon dioxides (CO2),
nitrogen dioxides (NOx), and particulate matter (PM) were increased.
Annual emissions of total PAHs were estimated to be 140.05, 126.92,
105.21, 81.97, and 79.86 ton/year for B0, B5, B10, B20 and B30,
respectively, decreasing with increasing biodiesel. Also, the
corresponding annual emissions of BaPeq were 5.88, 5.62, 3.50, 3.03, and
2.83 ton/year, respectively.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iii
目錄 iv
圖次 vii
表次 ix

第一章 前言 1
1.1 研究緣起 1
1.2 研究目標 2

第二章 文獻回顧 3
2.1多環芳香烴化合物 3
2.1.1 多環芳香烴化合物之特性 3
2.1.2 PAHs之危害 7
2.1.3 PAHs之來源 11
2.2 柴油引擎及排放特徵 16
2.2.1 柴油引擎原理 16
2.2.2 柴油引擎排放傳統污染物之特徵 19
2.2.3. 移動性污染源排放PAHs之特徵 21
2.3能源概況 22
2.3.1 能源近況 22
2.3.2 生質柴油之發展 23
2.3.3 生質柴油特性 24
2.3.4 生質柴油製造與方法 26
2.4 生質柴油引擎污染物之排放 29
2.5 氫氧氣之特徵 32
2.5.1 氫能之發展 32
2.5.2 氫氣的性質 33
2.5.3 氫氣的製備 35

第三章 研究方法與步驟 37
3.1 研究架構與流程 37
3.2 現場採樣 38
3.3 採樣方法與設備 39
3.3.1 柴油引擎 39
3.3.2 氫氧機 39
3.3.3 生質柴油 40
3.3.4 三相電力分析儀 40
3.3.5 PAHs採樣 41
3.3.6 排氣取樣設備 42
3.3.7 樣品分析 43
3.4 多環芳香烴化合物分析之品質保證與品質控制 47
3.4.1 空白試驗 47
3.4.2 檢量線之配置 48
3.4.3 方法偵測極限 55
3.4.4 準確度 55
3.4.5 精密度 56

第四章 結果與討論 60
4.1 柴油引擎固定氫氧進氣量為60 L/min時,添加不同比例生
質柴油對引擎性能之影響 60
4.1.1 制動熱效率 60
4.1.2 制動單位燃料消耗率 62
4.2 柴油引擎固定氫氧進氣量為60 L/min時,添加不同比例生
質柴油對傳統污染物之排放特徵 64
4.2.1 總碳氫化合物(THC) 65
4.2.2 氮氧化物(NOx) 67
4.2.3 一氧化碳(CO) 69
4.2.4 二氧化碳(CO2) 71
4.2.5 懸浮微粒(PM) 73
4.3 柴油引擎固定氫氧進氣量為60 L/min時,添加不同比例生
質柴油對PAHs之排放特徵 75
4.3.1 PAHs之排放濃度 75
4.3.2 PAHs排放係數 85
4.3.3 柴油引擎廢氣中PAHs之毒性當量係數 94
4.4 PAHs年排放量推估 100
4.5 柴油引擎添加生質柴油之PAHs相關文獻 107

第五章 結論與建議 112
5.1 結論 112
5.2 建議 114

參考文獻 ..115
附錄A ..130
作者簡歷 ..131
 
圖次

圖2-1 四行程柴油引擎工作原理 18
圖2-2 烷基酯類之結構式 25
圖2-3 氫氧電解系統流程圖 35
圖3-1 研究架構流程圖 37
圖3-2 重型柴油引擎實驗室 38
圖3-3 玻璃套筒裝填示意圖 42
圖3-4 重型柴油引擎煙道廢氣採樣分析設備圖 43
圖3-5 氣相層析儀升溫程式示意圖 47
圖4-1 添加不同比例生質柴油之制動熱效率(純柴油及生質柴油為燃料) 62
圖4-2 添加不同比例生質柴油之制動單位燃料消耗率(g/bhp-hr) 63
圖4-3 添加不同比例生質柴油之制動單位燃料消耗率(g/kWh) 64
圖4-4 添加不同比例生質柴油之THC排放係數 66
圖4-5 添加不同比例生質柴油之THC排放係數 66
圖4-6 添加不同比例生質柴油之THC排放減量 67
圖4-7 添加不同比例生質柴油之NOx排放係數 68
圖4-8 添加不同比例生質柴油之NOx排放係數 68
圖4-9 添加不同比例生質柴油之NOx增加率 69
圖4-10 添加不同比例生質柴油之CO排放係數 70
圖4-11 添加不同比例生質柴油之CO排放係數 70
圖4-12 添加不同比例生質柴油之CO排放減量 71
圖4-13 添加不同比例生質柴油之CO2排放係數 72
圖4-14 添加不同比例生質柴油之CO2排放係數 72
圖4-15 添加不同比例生質柴油之CO2增加率 73
圖4-16 添加不同生質柴油之PM排放係數 74
圖4-17 添加不同比例生質柴油之PM排放係數 74
圖4-18 添加不同比例生質柴油之PM增加率 75
圖4-19 添加不同比例生質柴油之Total PAHs濃度 78
圖4-20 添加不同比例生質柴油之LMW-PAHs濃度 79
圖4-21 添加不同比例生質柴油之MMW-PAHs濃度 80
圖4-22 添加不同比例生質柴油之HMW-PAHs濃度 81
圖4-23 添加不同比例生質柴油之各分子量PAHs排放減量 82
圖4-24 添加不同比例生質柴油之總PAHs排放係數 88
圖4-25 添加不同比例生質柴油之LMW-PAHs排放係數 88
圖4-26 添加不同比例生質柴油之MMW-PAHs排放係數 89
圖4-27 添加不同比例生質柴油之HMW-PAHs排放係數 89
圖4-28 Total PAHs的排放係數 92
圖4-29 LMW-PAHs的排放係數 92
圖4-30 MMW-PAHs的排放係數 93
圖4-31 HMW-PAHs的排放係數 93
圖4-32 添加不同生質柴油之BaPeq濃度 96
圖4-33 添加不同生質柴油之BaPeq排放係數 96
圖4-34 添加不同生質柴油之BaPeq排放減量 97
圖4-35 BbF+BaP+DBA排放濃度 98
圖4-36 BbF+BaP+DBA排放係數 99
圖4-37 BbF+BaP+DBA排放減量 99
圖4-38 PDF之Total PAHs年排放量 103
圖4-39 LMW-PAHs之年排放量 103
圖4-40 MMW-PAHs之年排放量 104
圖4-41 HMW-PAHs之年排放量 104
圖4-42 BaPeq之年排放量 105
圖4-43 高致癌性物質之年排放量 106

 
表次

表2-1 21種PAHs之分子量、結構式及物理特性 4
表2-2 PAHs之蒸氣壓於25℃水中之溶解度與親電性反應(Eπ) 6
表2-3 21種PAHs之致癌性 10
表2-4 各污染源所產生的PAHs物種 13
表2-5 台灣能源供需展望 23
表2-6 能源安全度 33
表3-1 重型柴油引擎規格表 39
表3-2 氫氧機規格表 40
表3-3 PAHs標準品之成分及濃度 (Supelco) 49
表3-4 PAHs標準品之成分及濃度 (Dr. Ehrenstorfer) 49
表3-5 21種PAHs標準品原液稀釋成4 ng/mL之GC/MS圖譜積分面積 50
表3-6 21種PAHs標準品原液稀釋成4 ng/mL之GC/MS圖譜積分面積平均值、標準偏差及相對標準偏差 51
表3-7 標準品檢量線 52
表3-8 21種PAHs標準品於GC/MS滯留時間 53
表3-9 21種PAHs標準品GC/MS滯留時間之平均值及標準偏差 54
表3-10 21種PAHs之方法偵測極限值 57
表3-11 21種標準品之回收率 58
表3-12 標準品回收率之精密度及準確度 59
表4-1 添加不同比例生質柴油之PAHs排放濃度 76
表4-2 添加不同比例生質柴油之PAHs排放減量 77
表4-3 PAHs之環數分佈 78
表4-4 添加不同比例生質柴油PAHs濃度占總PAHs濃度之百分
比 84
表4-5 添加不同比例生質柴油之引擎PAHs排放係數 87
表4-6 燃油之PAHs排放係數 91
表4-7 毒性當量係數表 95
表4-8 高致癌性物質(BbF+BaP+DBA)排放濃度及排放係數 98
表4-9 各縣市加油站柴油總銷售量統計 101
表4-10 PAHs之年排放量 102
表4-11 柴油引擎以生質柴油為燃料之PAHs相關文獻 109
參考文獻 References
Adams, C., Peters, J.F., Rand, M.C., Schroer, B.J., Ziemke, M.C., 1983. Investigation
of Soybean Oil as a Diesel Fuel Extender: Endurance Tests. Journal of the
American Oil Chemists&apos Society 60, 1574 − 1579.
Akio, K., Youki, O., 1987. Mutagenic Activity and PAH Analysis in Municipal
Incinerator. The Science of Total Environment 61, 37 − 49.
Al-Hasan, M., 2003. Effect of Ethanol−Unleaded Gasoline Blends on Engine
Performance and Exhaust Emission. Energy and Conversion Management 44.
1547 – 1561.
Ali, Y., Hanna, M.A., Leviticus, L.I., 1995. Emission and Power Characteristics of
Diesel Engines on Methyl Soyate and Diesel Fuel Blends. Bioresource
Technology 52, 185 − 195.
Altin, R., Cetinkaya, S., Yucesu, H.S., 2001. The Potential of Using Vegetable Oil
Fuels as Fuel for Diesel Engines. Energy Conversion and Management 42, 529 −
538.
Al-Widyan, M. I., Tashtoush, G., Abu-Qudais, M., 2002. Utilization of Ethyl Ester of
Waste Vegetable Oils as Fuel in Diesel Engines. Fuel 76, 91 – 103.
Anderson, J.W., Jones, J.M., Steinert, S., Sanders, B., Means, J., McMillin, D., Vu, T.,
Tukey, R., 1999. Correlation of CYP1A1 Induction, as Measured by the P450
RGS Biomarker Assay, with High Molecular Weight PAHs in Mussels Deployed
at Various Sites in San Diego Bay in 1993 and 1995. Marine Environmental
Research 48. 389 − 405.
Barfknecht, T.R., 1983. Toxicology of Soot. Progress in Engergy and Combustion
Science 9, 199 − 237.
Bari, S., Esmaeil, M.M., 2010. Effect of H2/O2 Addition in Increasing the Thermal
Efficiency of a Diesel Engine. Fuel 89, 378 – 383.
Billaud, F., Dominguez, V., Broutin, P., Busson, C., 1995. Production of
Hydrocarbons by Pyrolysis of Methyl Esters from Rapeseed Oil. Journal of the American Oil Chemists’ Society 72, 1149 − 1154.
Bjørseth, A., Becher, G., 1986. PAH in Work Atmospheres: Occurrence and
Determination. CRC Press, Inc. Boca Raton, Florida, ISBN 0-8493-6064-1.
Bjørseth, A., Ramahl, T., 1983. Sources and Emission of PAH. Handbook of
Polycyclic Aromatic Hydrocarbons 1. Marcel Dekker, Inc. New York and Basel.
Breda Kegl., 2008. Effects of Biodiesel on Emissions of a Bus Diesel Engine.
Bioresource Technology 99, 863 – 873.
British Petroleum., 2009, BP Statistical Review of World Energy.
Broströem, L.E., Loevblad, G., 1991. Deposition of Soot Related Hydrocarbons
During Long−Range Transport of Pollution to Sweden. Atmospheric
Environment 25A, 2251 − 2257.
Canakci, M., Gerpan, J.V., 1999. Biodiesel Production via Acid Catalysis.
Transactions of the American Society of Agricultural Engineers 42, 1203 – 1210.
Cardone, M., Parti, M.V., Rocoo, V., Seggiani, M., Senatore, A., Vitolo, S., 2002.
Brassica Carinata as an Alternative Oil Crop for the Production of Biodiesel in
Italy: Engine Performance and Regulated and Unregulated Exhaust Emission.
Environmental Science and Technology 36, 4656 − 4662.
Caricchia, A.M., Chiavarini, S., Pezza, M., 1999. Polycyclic Aromatic Hydrocarbons
in the Urban Atmospheric Particulate Matter in the City of Naples (Italy).
Atmospheric Environment 33, 3731 − 3738.
Cavalieri, E.L., Rogan, E.G., 1995. Central Role of Radical Cations in Metabolic
Activation of Polycyclic Aromatic Hydrocarbons. Xenobiotica 25, 677 − 688.
Chen, K.C., Wang, H.K., Peng, Y.P., Wang, W.C., Chen, C.H., 2008. Effects of Open
Burning of Rice Straw on Concentrations of Atmospheric Polycyclic Aromatic
Hydrocarbons in Central Taiwan. Air & Waste Management Association 58, 1318
− 1327.
Chen, Y., Bi, X., Mai, B., Sheng, G., Fu, J., 2004. Emission Characterization of
Particulate/Gaseous Phase and Size Association for Polycyclic Aromatic
Hydrocarbons form Residential Coal Combustion. Fuel 83, 781 − 790.
Clarke, S., Dicks, A., Pointon, K., Smith, T., Swann, A., 1997. Catalytic Aspects of
the Steam Reforming of Hydrocarbons in Internal Reforming Fuel Cells.
Catalysis Today 38, 411 − 423.
Cope, V.W., Kalkwarf, D.R., 1987. Photooxidation of Selected Polycyclic Aromatic
Hydrocarbons and Pyrenequinones Coated on Glass Surfaces. Environment
Science & Technology 21, 643 − 648.
Crittenden, A.D., Long, R., 1976. In Carcinogenesis−A Comprehensive Survey, Vol.
1, R. I. Freudenthal and P. W. Jones (Eds.), Raven Press, New York, 209.
Das, L.M., 2002. Hydrogen Engine: Research and Development (R&D) Programmes
in Indian Institute of Technology (IIT), Delhi. International Journal of Hydrogen
Energy 27, 953 – 965.
Davis, C.S., Fellin, P., Otson, R., 1987. A Review os Sampling Methods for
Polynuclear Aromatic Hydrocarbons in Air. Journal of Applied Crystallography
37, 1397 − 1408.
Demirbas, A., 2003. Biodiesel Fuels from Vegetable Oils via Catalytic and
Non-catalytic Supercritical Alcohol Transesterifications and Other Methods: a
Survey. Energy Convers Manage 44, 2093 − 2109.
Demirbas, A., 2006. Biodiesel Production via Non-catalytic SCF Method and
Biodiesel Fuel Characteristics. Energy Conservation and Management 47, 2271
– 2281.
Demirbas, A., 2007. Recent Developments in Biodiesel Fuels. International Journal
of Green Energy 4, 15 – 26.
Desantes, J.M., Bermudez, V., Garcia, J.M., Fuentes, E., 2005. Effects of Current
Engine Strategies on the Exhaust Aerosol Particle Size Distribution from a
Heavy−Duty Diesel Engine. Aerosol Science 36, 1251 − 1276.
Dias, J.R., 1987. Handbook of Polycyclic Hydrocarbons: Part A: Benzenoid
Hydrocarbons, Elsevier, Amsterdam.
Dorado, M.P., Ballesteros, E., Arnal, J.M., Gomez, J., Lopes, F.J., 2003. Exhaust
Emissions from a Diesel Engine Fueled with Transeterified Waste Olive Oil. Fuel 82, 1311 − 1315.
Dorado, M.P., Ballesteros, E., Lopez, F.J., Mittelbach, M., 2004. Optimization of
Alkali-catalyzed Transesterification of Brassica Carinata Oil for Biodiesel
Production. Fuel 18, 77 − 83.
Durbin, T.D., Collins, J.R., Norbeck, J.M., Smith, M.R., 2000. Effects of Biodiesel,
Biodiesel Blends, and a Synthetic Diesel on Emissions from Light Heavy-Duty
Diesel Vehicles. Environmental Science and Technology 34, 349 − 355.
Fairbanks, J.W., 2000. The Diesel Engines Challenge in the New Millennium. Diesel
Engine Emission Reduction Workshop 6, 20 − 24.
Freedman, B., Pryde, E.H., Mounts, T.L., 1984. Variables Affecting the Yield of Fatty
Esters from Transesterified Vegetable Oils. Journal of American Oil Chemists
Society 61, 1638 – 1643.
Frenklach, M., Clary, D.W., Yuan, T., Gardine, C.W., Stein, S.E., 1985. Detailed
Kinetic Modeling of Soot Sybposium (International) on Combustion. The
Combustion Institute, Pittsburgh, 887.
Gertler, A.W., Sagebiel, J.C., Dippel, W.A., Farina, R.J., 1998. Measurements of
Dioxin and Furan Emission Factors from Heavy−Duty Diesel Vehicles. Journal
of the Air & Waste Management Association 48, 276 − 278.
Grimmer, G., 1983. Environment Carcinogens: Polycyclic Aromatic Hydrocarbons.
Environment Science & Technology 24, 1581 − 1588.
Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source Apportionment of
Atmospheric Polycyclic Aromatic Hydrocarbons Collected from an Urban
Location in Birmingham, U.K. Environment Science & Technology 30, 825 −
832.
He, C., Ge, Y., Tan, J., You, K., Han, X., Wang, J., 2010. Characteristics of
Polycyclic Aromatic Hydrocarbons Emissions of Diesel Engine Fueled with
Biodiesel and Diesel. Fuel 89, 2040 – 2046.
Heywood, J.B., 1988. Internal Combustion Engine Fundamentals. New York:
McGraw−Hill Book Company.
Ho, K.F., Lee, S.C., 2002. Identification of Atmospheric Volatile Organic
Compounds (VOCs), Polycyclic Aromatic Hydrocarbons (PAHs) and Carbonyl
Compounds in Hog Kong. The Science of the Total Environment 289, 145 − 158.
Hoffman, E.J., Mills, G.L., Latimer, J.S., Quinn, J.G., 1984. Urban Runoff as a
Source of Polycyclic Aromatic Hydrocarbons to Coastal Waters. Environment
Science & Technology 18, 580 − 587.
Howsam, M., Jones, K.C., Ineson, P., 2000. PAHs Associated with the Leaves of Tree
Species. I−Concentrations and Profiles. Environmental Pollution. 108, 413 −
424.
Huang, J., Wang Y., Qin J.b., Roskilly, A.P., 2010. Comparative Study of
Performance and Emissions of a Diesel Engine Using Chinese Pistache and
Jatropha Biodiesel. Fuel Processing Technology 91, 1761 − 1767.
IARC., 1983. Polynuclear Aromatic Compounds. Part 1. Chemical, Environmental
and Experimental Data. Office of Health and Environmental Assessment, US
EPA., Washington, D.C.
IARC., 1987. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals
to Humans. International Agency for Research on Cancer (IARC), Supplement 7,
Lyons.
Janssen, H., Bringmann, J., Emonts, B., Schroeder, V., 2004. Safety − Related Studies
on Hydrogen Production in High−Pressure Electrolysers. Hydrogen Energy 29,
759 − 770.
Jean, L.B., Anne, M., Olivier, P., Nicolas, M., Nathalie, C., Muriel, S., Pierre, M.,
2001. Particulate PAHs Observed in the Surrounding of a Municipal Incinerator.
Atmospheric Environment 35, 6093 − 6104.
Josephy, P.D., 1997. Polycyclic Aromatic Hydrocarbon Carcinogenesis, Molecular
Toxicology, Oxford University Press, New York, 315 − 351.
Kalligeros, S., Zannikos, F., Strournas, S., Lois, E., Anastopoulos, G., Teas, C.H.,
Sakellarppoulos, F., 2003. An Investigation of Using Biodiesel/Matine Diesel
Blends on the Performance of a Stationary Diesel Engine. Biomass and Bioenergy 24, 141 − 149.
Katz, M., Chan, C., 1980. Comparative Distribution of Eight Polycyclic Aromatic
Hydrocarbons in Airborne Particulates Collected by Conventional High−Volume
Sampling and by Size Fractionation. Environment Science & Technology 14, 838
− 843.
Keller, C.D., Bidleman, T.F., 1984. Collection of Airborne Polycyclic Aromatic
Hydrocarbons and Other Organic a Glass Fiber Filter−Polyurethane Foam
System. Atmospheric Environment 18, 837 − 845.
Kerminen, V.M., MÄKELÄ, T.E., Ojanen, C.H., Hillamo, R.E., Vilhunen, J.K.,
Rantanen, L., Havers, N., Bohlen, A.V., Klockow, D., 1997. Characterization of
the Particulate Phase in the Exhaust from a Diesel Car. Environment Science &
Technology 31, 1883 − 1889.
Kieser, R.D., 1988. Diesel Engines: Future Trends. Automotive Engineering 96, 39 −
46.
Klaassen, C.D., 1996. Casarett and Doull’s Toxicology: The Basic Science of
Poisons.New York Mc−Graw−Hill Companies Inc.
Knize, M.G., Salmon, C.P., Pais, P., Felton, J.S., 1999. Food Heating and the
Formation of Heterocyclic Aromatic Amine and Polycyclic Aromatic
Hydrocarbon Mutagens/Carcinogens. Advances in Experimental Medicine and
Biology 459, 179 – 193.
Knothe, G., Gerpen, J.V., Krahl, J.G., 2005. The Biodiesel Handbook, American Oil
Chemists' Society press, Urbana, Illinois, USA.
Krishnamurthy, M., Carder, D.K., Thompson, G., Gautam, M., 2007. Cost of Lower
NOx Emissions: Increased CO2 Emissions from Heavy−Duty Diesel Engines.
Atmospheric Environment 41, 666 – 675.
Kulkarni, P., Venkataraman, C., 2000. Atmospheric Polycyclic Aromatic
Hydrocarbons in Mumbai, India. Atmospheric Environment 34, 2785 − 2790.
Lai, C.H., Chen, K.S., Wang, H.K., 2009a. Influence of Rice Straw Burning on the
Levels of Polycyclic Aromatic Hydrocarbons in Agricultural County of Taiwan. Journal of Environmental Sciences 21, 1200 − 1207.
Lai, C.H., Li, H.C., Chen, K.S., 2009b. Source Characterization and Environment
Impact of Open Burning of Rice Straw Residues on Polycyclic Aromatic
Hydrocarbons in Agricultural County, Taiwan. Journal of Environmental
Engineering and Management 19, 79 − 88.
Lapuerta, M., Armas, O., Rodríguez-Fernández, J., 2008. Effect of Biodiesel Fuels on
Diesel Engine Emissions. Progress in Energy and Combustion Science 34, 198 –
223.
Leonardi, A., Burtscher, H., Siegmann, H.C., 1993. Size−Dependent Measurement of
Aerosol Photoemission from Particles in Diesel Exhaust. Atmoshperic
Environment 27, 1251 − 1254.
Li, C.K., Kamens, R.M., 1993. The Use of Polycyclic Aromatic Hydrocarbons as
Source Signatures in Receptors Modeling. Atmospheric Environment 27, 523 −
532.
Li, C.S., Ro, Y.S., 2000. Indoor Characteristics of Polycyclic Aromatic Hydrocarbons
in the Urban Atmospheric of Taipei. Atmospheric Environment 34, 611 − 620.
Li, C.T., Lee, W.J., Wu, C.H., Wang, Y.T., 1995. PAH Emission from Waste
Ion−exchange Resin Incineration. Science of the Total Environment 155, 253 −
266.
Li, D.G., Huang, Z., Lu, X.C., Zhang, W.G., Yang, J.G., 2005. Physico−Chemical
Properties of Ethanol–Diesel Blend Fuel and Its Effect on Performance and
Emissions of Diesel Engines. Renewable energy 30, 967 – 976.
Lin, Y.C., Lee, W.J., Li, H.W., Chen, C.B., Fang, G.C., Tsai, P.J., 2006. Impact of
Using Fishing Boat Fuel with High Poly Aromatic Content on the Emission of
Polycyclic Aromatic Hydrocarbons from the Diesel Engine. Atmospheric
Environment 40, 1601 – 1609.
Lodge Jr., J.P., 1989. Methods of Air Sampling and Analysis. 3rd ed., Lewis
Publishers, Inc., Chelsea, Michigan.
Ma, F., Hanna, M.A., 1999. Biodiesel Production: a Review. Bioresource Technology 70, 1 − 15.
Masclet, P., Mouvier, G., Nikolaou, K., 1986. Relative Decay Index and Source of
Polycyclic Aromatic Hydrocarbons. Atmospheric Environment 20, 439 − 446.
Masood, M., Ishrat, M.M., Reddy, A.S., 2007. Computational Combustion and
Emission Analysis of Hydrogen−Diesel Blends with Experimental Verification.
International Journal of Hydrogen Energy 32, 2539 – 2547.
Mastral, A.M., Garcia, T., Callen, M.S., 2001. Effects of Limestone on Polycyclic
Aromatic Hydrocarbon Emissions during Coal Atmospheric Fluidized Bed
Combustion. Energy Fuel 15, 1469 − 1474.
Menzie, C.A., Potocki, B.B., Santodonato, J., 1983. Exposure to Carcinogenic PAHs
in the Environment. Environment Science & Technology 26, 1278 − 1284.
Mi, H.H., Lee, W.J., Chen, C.B., Yang, H.H., Wu, S.J., 2000. Effect of Fuel Aromatic
Content on PAH Emission from a Heavy−Duty Diesel Engine. Chemosphere 41,
1783 − 1790.
Mi, H.H., Lee, W.J., Chen, S.J., Lin, T.C., Wu, T.L., Hu, J.C., 1998. Effect of the
Gasoline Additive on PAHs Emission. Chemophere 36, 2031 – 2041.
Mi, H.H., Lee, W.J., Wu, T.L., Lin, T.C, Wang, L.C., Chao, H.R, 1996. PAH
Emission from a Gasoline−Powered Engine. Journal Environment Science
Health 31, 1981 − 2003.
Michael, B.S., Andrea, M.M., 1998. Restaurant Smoking Restrictions and
Environment Tobacco Smoke Exposure. American Journal of Public Health 88,
1834 − 1836.
Mumford, J.L., 1987. Lung Cancer and Indoor Air Pollution in Xuanwei, China.
Science 235, 217 − 220.
Mustafa Canakci., 2007. Combustion Characteristics of a Turbocharged DI
Compression Ignition Engine Fueled with Petroleum Diesel Fuels and Biodiesel.
Bioresource Technology 98, 1167 – 1175.
Nielsen, T., 1996. Traffic Contribution of Polycyclic Aromatic Hydrocarbons in the
Center of a Large City. Atmospheric Environment 30, 3481 − 3490.
Nisbet, C., LaGcy, P., 1992. Toxic Equivalency Factors (TEFs) for Polycyclic
Aromatic Hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 16,
290 − 300.
Omar, N.Y.M.J., Abas, M.R.B., Ketuly, K.A., Tahir, N.M., 2002. Concentrations of
PAHs in Atmospheric Particles (PM-10) and Roadside Soil Particles Collected in
Kuala Lumpur, Malaysia. Atmospheric Environment 36, 247 − 254.
Pang, X., Shi, X., Mu, Y., He, H., Shuai, S., Chen, H., Li, R., 2006. Characteristics of
Carbonyl Compounds Emission from a Diesel-Engine Using Biodiesel–Ethanol–
Diesel as Fuel. Atmospheric Environment 40, 7057 − 7065.
Papagiannakis, R.G., Hountalas, D.T., 2003. Experimental Investigation Concerning
the Effect of Natural Gas Percentage on Performance and Emissions of a DI
Dual Fuel Diesel Engine. Applied Thermal Engineering 23, 353 – 365.
Papagiannakis, R.G., Kotsiopoulos, P.N., Zannis, T.C., Yfantis, E.A., Hountalas, D.T.,
Rakopoulos, C.D., 2010. Theoretical Study of the Effects of Engine Parameters
on Performance and Emissions of a Pilot Ignited Natural Gas Diesel Engine.
Energy 35, 1129 – 1138.
Park, S.S., Kim, Y.J., Kang, C.H., 2002. Atmospheric Polycyclic Aromatic
Hydrocarbons in Seoul, Korea. Atmospheric Environment 36, 2917 − 2924.
Parkinson, P., 1992. Casarett and Doull’s Toxicology: The Basic Science of Poisons,
Unit 2: Disposition of toxicants. 5th Ed., New York, Pergamon Press, 114 − 125.
Pedersen, P.S., Ingwersen, J., Nielsen, T., Larsen, E., 1980. Effects of Fuel, Lubricant
and Engine Opetrating Parameters on the Emission of Polycyclic Aromatic
Hydrocarbons. Environment Science & Technology 14, 71 − 79.
Rakopoulos, D.C., Rakopoulos, C.D., Giakoumis, E.G., Dimaratos, A.M., Kyritsis,
D.C., 2010. Effects of Butanol–Diesel Fuel Blends on the Performance and
Emissions of a High–Speed DI Diesel Engine. Energy Conversion and
Management 51, 1989 – 1997.
Rakopoulos, D.C., Rakopoulos, C.D., Kakaras, E.C., Giakoumis, E.G., 2008. Effects
of Ethanol–Diesel Fuel Blends on the Performance and Exhaust Emissions of Heavy Duty DI Diesel Engine. Energy Conversion and Management 49, 3155 –
3162.
Roy, M.M., Tomita, E., Kawahara, N., Harada, Y., Sakane, A., 2010. An
Experimental Investigation on Engine Performance and Emissions of a
SuperCharged H2−Diesel Dual−Fuel Engine. International Journal of Hydrogen
energy 35, 844 – 853.
Saravanan, N., Nagarajan, G., Sanjay, G., Dhanasekaran, C., Kalaiselvan, K.M., 2008.
Combustion Analysis on a DI Diesel Engine with Hydrogen in Dual Fuel Mode.
Fuel 87, 3591 – 3599.
Schinder, K.P., 1992. Integrated Diesel European Action (IDEA): Study of Diesel
Combustion. SAE Paper 920591.
Schumacher, L.G., Borglet, S.C., Fosseen, D., Goetz, W., Hires, W.G., 1996.
Heavy-Duty Engine Exhaust Emission Test Using Methyl Ester Soybean
Oil/Diesel Fuel Blends. Bioresource Technology 57, 31 − 36.
Schwab, A.W., Bagby, M.O., Freedman, B., 1987. Evaluation of Biodiesel Obtained
from Cottonseed Oil. Fuel 66, 1372 – 1378.
Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H., 1988. Diesel fuel
from Thermal Decomposition of Soybean Oil. Journal of the American Oil
Chemists’ Society 65, 1781 − 1786.
Semdley, J.M., Williams, A., Bartle, K.D., 1992. A Mechanism for the Formation of
Soot Particles and Soot Deposits. Combustion and Flame 91, 71 − 82.
Senthil, K.M., Ramesh, A., Nagalingam, B., 2003. Use of Hydrogen to Enhance the
Performance of a Vegetable Oil Fuelled Compression Ignition Engine.
International Journal of Hydrogen Energy 10, 1143 – 1154.
Shah, V., Garg, N., Madamwar, D., 2001. Ultrastructure of the Fresh Water
Cyanobacterium Anabaena Variabilis SPU 003 and Its Application for
Oxygen−Free Hydrogen Production. FEMS Microbiology Letters 194, 71 − 75.
Sharma, Y.C., Singh, B., 2008. Development of Biodiesel from Karanja, a Tree Found
in Rural India. Fuel 87, 1740 − 1742.
Sharma, Y.C., Singh, B., Upadhyay S N., 2008. Advancements in Development and
Characterization of Biodiesel: a review. Fuel 87, 2355 – 2373.
Sheu, H. L., Lee, W.J., Tsai, J.H., Fan, Y.C., Su, C.C., Chao, H.R., 1996. Particule
Size Distribution of Polycyclic Aromatic Hydrocarbons in the Ambient Air of a
Traffic Intersection. Journal of Environment Science and Health 31, 1293 –
1316.
Sisovic, A., Fugas, M., 1997. Smoke Concentration as an Indicator of Polycyclic
Aromatic Hydrocarbons Levels in the Air. Environmental Monitoring and
Assessment 45, 201 − 207.
Soontjens, C.D., Holmberg, K., Westerholm, R.N., Rafter, J.J., 1997. Characterization
of Polycyclic Aromatic Compounds in Diesel Exhaust Particulate Extract
Responsible for Aryl Hydrocarbon Receptor Activity. Atmospheric Enviromnent
31, 219 − 225.
Spotswood, T.M., Badger, K., 1960. The Formation of Aromatic Hydrocarbons at
High Temperature Part Ⅸ . The Pyrolysis of Toluene, Ehylbenzene,
Propylbenzene and Butylbenzene. Journal of Chemistry Society (London), 4420
− 4427.
Terzi, E., Samara, C., 2004. Gas−Particle Partitioning of Polycyclic Aromatic
Hydrocarbons in Urban, Adjacent Coastal, and Continental Background Sites of
Western Greece. Environmental Science & Technology 38, 4973 – 4978.
Teschke, K., Hertzman, C., Nettrn, C.V., 1989. Potential Exposure of Cooks to
Airborne Mutagens and Carcinogens. Environmental Research 50, 261 − 308.
Tsai, P.J., Shih, T.S., Chen, H.L., Lee, W.J., Lai, C.H., Liou, S.H., 2004. Assessing
and Predicting the Exposures of Polycyclic Aromatic Hydrocarbons (PAHs) and
Their Carcinogenic Potencies from Vehicle Engine Exhausts to Highway Toll
Station Workers. Atmospheric Environment 38, 333 – 343.
Tuominen, J., Salomss, S., Pyysalo, H., Skytta, E., Tikkanen, L., Nurmela., T., Sorsa,
M., Pohjola, V., Sauri, M., Himberg, K., 1988. Polycyclic Aromatic
Hydrocarbons and Genotoxicity in Particulate and Vapor Phases of Ambient Air: Effect of Traffic Season and Meteorological Conditions. Environment Science &
Technology 22, 1228 − 1234.
University of Idaho (Department of Biological and Agricultural Engineering), Acute
Toxicity of Biodiesel to Freshwater and Marine Organisms. Development of
Rapeseed Biodiesel for Use un High-speed Diesel Engine. Progress report, 117
– 131.
US. EPA, 1987. Locating and Estimating Air Emission form Sources of Polycyclic
Organic Matter (POM). EPA-45014-84-007.
US. EPA, 2003. Appendix A to 40 CFR, Part 423 – 126 Priority Pollutants.
Utlu Z., Kocak M.S., 2008. The Effect of Biodiesel Fuel Obtained from Waste
Cooking Oil on Direct Injection Diesel Engine Performance and Exhaust
Emissions. Renew Energy 33, 1936 − 1941.
Wang, H.K., Cheng, C.Y., Chen, K.S., Lin, Y.C., Chen, C.B., 2012. Effect of
regulated harmful matters from a heavy-duty diesel engine by H2/O2 addition to
the combustion chamber. Fuel 93, 524 – 527.
Wang, S., Ji, C., Zhang, B., 2010. Effect of Hydrogen Addition on Combustion and
Emissions Performance of a Spark−Ignited Ethanol Engine at Idle and
Stoichiometric Conditions. International Journal of Hydrogen Energy 35, 9205
− 9213.
Westerholm, R., Li, H., 1994. A Multivariate Statistical Analysis of Fuel − Related
Polycyclic Aromatic Hydrocarbon Emission from Heavy−Duty Diesel Vehicles.
Environment Science & Technology 28, 965 − 972.
Westerholm, R.N., Alsberg, T.E., Frommelin, Å.B., Strandell, E.M., 1988. Effect of
Fuel Polycyclic Aromatic Hydrocarbon Content on the Emission of Polycylic
Aromatic Aydrocarbons and Other Mutagenic Substances from a
Gasoline-fueled Automobile. Environmental science & technology 22, 925 –
930.
Wey, M.Y., Shi, J.K., 1997. Effect of Pressure Fluctuations on PAHs Emission and
Combustion Efficiency during Incineration. Toxicological and Environmental Chemistry 61,83 − 98.
Williams, P.T., Baetle, K.D., Andrews, G.E., 1986. The Relation between Polycyclic
Aromatic Compounds in Diesel Fuels and Exhaust Particles. Fuel 65, 1150 −
1158.
Wybraniec, S., De Jong, A.P., 1996. Modified Sampling and Analysis Method for
Large Volatility Range Airbone Polycyclic Aromatic Hydrocarbons (PAH)
Using Gas Chromatography−Mass Spectrometry. Journal of Analytical
Chemistry 356, 396 − 402.
Yang, H.H., Chiang, C.F., Lee, W.J., Hwang, K.P., Wu, M.F., 1999. Size Distribution
and Dry Deposition of Road Dust PAHs. Environment International 25, 585 −
597.
Yang, H.H., Lee, W.J., Chen, S.J., Lai, S.O., 1998. PAH Emission from Various
Industrial Stacks. Journal of Hazardous Materials 60, 159 − 174.
Yang, H.H., Lo, M.Y., Lan, J.C.W., Wang, J.S., Hsieh, D.P.H., 2007. Characteristics
of Trans, Trans−2, 4−Decadienal and Polycyclic Aromatic Hydrocarbons in
Exhaust of Diesel Engine Fueled with Biodiesel. Atmospheric Environment 41,
3373 − 3380.
Yasuda, K., Kaneko, M., Sugiyma, K., Yashino, H., Otsuka, Y., 1989. Basic Research
on the Emission of Polycyclic Aromatic Hydrocarbon Caused by Waste
Incineration. Journal of Applied Crystallography 39, 1557 − 1561.
Yuan, C.S., Lin, Y.C., Tsai, C.H., Wu, C.C., Lin, Y.S., 2009. Reducing Carbonyl
Emissions from a Heavy−Duty Diesel Engine at US Transient Cycle Test by Use
of Paraffinic/Biodiesel Blends. Atmospheric Environment 43, 6175 – 6181.
Zervas, E., Poulopoulos, S., Philippopoulos, C., 2006. CO2 Emissions Change from
the Introduction of Diesel Passenger Cars: Case of Greece. Energy 31, 2915 –
2925.
王信凱,2008,「高雄都會區與中部鄉村多環芳香烴化合物濃度特徵之研究」,
國立中山大學環境工程研究所,博士論文。
王琳麒,1997,「石化廢棄物焚化爐排放多環芳香烴特徵之影響」,國立成功大學環境工程研究所,碩士論文。
王雅玢,1994,「交通污染源大氣中多環芳香烴化合物特徵之探討」,國立成功
大學環境工程研究所,碩士論文。
曲新生、陳發林、呂錫民,2007,產氫與儲氫技術,臺北市:五南圖書出版股份
有限公司。
米孝萱,1998,「移動性污染源排放多環芳香烴化合物之特徵」,國立成功大學
環境工程學系,博士論文。
行政院勞工委員會,1997,物質安全資料表−氫氣。
吳志榮,1997,「金屬鹽類添加劑對苯焚化之PAHs 生成影響之研究」,東海大學
環境科學系,碩士論文。
吳贊鐸,1991,「柴油車空氣污染學」,臺北縣,淑馨出版社。
呂局校,2006,「高雄市大氣中多環芳香烴化合物濃度特徵之調查分析」,國立
中山大學環境工程研究所,碩士論文。
李興旺,2004,「石化柴油及添加生質柴油引擎排放多環芳香烴之特徵」,國立成
功大學環境工程學系,碩士論文。
汪國禎,2001,汽車學(三)柴油引擎篇,台南:復文書局。
周函螢,2008,「燒烤煙霧中多環芳香族碳氫化合物氣、固相與粒徑分布特性之
研究」,輔仁大學公共衛生學系,碩士論文。
林健三,2008,環境工程概論,臺北市:鼎茂圖書出版股份有限公司。
林啟同,2007,「柴油引擎使用生質燃料之清淨性評估」,遠東科技大學機械工
程系,碩士論文。
林淵淙,2000,「餐廳廚房排放廢氣及周圍大氣中多環芳香烴化合物之特徵」,國
立成功大學環境工程學系,碩士論文。
林淵淙,2006,「生質柴油及乳化柴油對柴油引擎排放廢氣污染減量及提升能源
效率之研究」,國立成功大學環境工程學系,博士論文。
徐明璋,2001,「生質柴油的產製及其在柴油引擎上之可行性研究」,國立台灣
大學生物產業機電工程學研究所,碩士論文。
張家修、李國興、林屏杰、吳石乙、林秋裕,2002,以環境微生物技術生產清潔
能源−氫氣。中國化學工程學會,第49卷第6期,85 − 104。
張嘉益,2009,「柴油引擎使用生質柴油排放氣膠微粒之多環芳香烴及其生物毒
性研究」,國立成功大學環境工程學系,碩士論文。
莊茂隆,1995,「石化工業區及交通污染源區之多環芳香烴化合物的濃度特徵與
粒徑分佈」,國立成功大學環境工程學系,碩士論文。
陳千翔,2006,「大氣多環芳香烴濃度於露天燃燒地區之時空分佈特徵」,國立
中山大學環境工程研究所,碩士論文。
陳介武,2000,「生化柴油發展與趨勢」,黃豆之工業應用及環保。
陳峰毅,2003,「不同油品對機車引擎排放多環芳香烴特徵之影響」,南台科技
大學化學工程研究所,碩士論文。
陳恭府,2005,「超低硫柴油摻配生質柴油之油品特性及污染排放分析」,國立
中山大學環境工程研究所,碩士論文。
黃亦生,2011,「添加氫氧混合氣對柴油引擎多環芳香烴減量與節能之研究」,
國立中山大學環境工程研究所,碩士論文。
黃志偉,1999,「柴油車排放廢氣中多環芳香烴化合物之特徵研究」,國立成功
大學環境工程學系,碩士論文。
黃靖雄,1990,「汽車排氣污染與控制全書」,台中市,正工出版社。
楊錫賢,1997,「大氣環境中多環芳香烴化合物與金屬元素之特徵」,國立成功
大學環境工程學系,博士論文。
經濟部能源局,2007,http://www.moeaec.gov.tw/Default.aspx?group=2。
經濟部標準檢驗局,http://www.bsmi.gov.tw/wSite/index.jsp。
葛應欽、黃吉志、林相如、王姿乃、陳志樑、李建宏,1994,「不吸菸婦女肺癌
流行病學研究」,行政院衛生署,NSC83-0412-B037-049。
管大緯,2007,「酒精汽油對機車引擎排放多環芳香烴化合物之特性研究」,嘉
南藥理科技大學環境工程與科學系,碩士論文。
鄭清山,2003,「烷化生質柴油對柴油引擎影響之研究」,國立高雄第一科技大
學環境與安全衛生工程研究所,碩士論文。
賴順安,1999,「鋼鐵廠煙道排放多環芳香烴化合物及金屬元素之特徵」,國立
成功大學環境工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code