Responsive image
博碩士論文 etd-0626113-145203 詳細資訊
Title page for etd-0626113-145203
論文名稱
Title
氧化物薄膜電晶體之元件新穎應用與物理機制研究
Physical Mechanisms and device new application of ZnO-based Thin Film Transistor
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
161
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-20
繳交日期
Date of Submission
2013-07-26
關鍵字
Keywords
銦鎵鋅氧化物、薄膜電晶體、紫外光感應、閘極負偏壓照光、鋅錫氧化物、可靠度
UV sensor, a-ZTO, thin film transistors, a-IGZO, negative bias illumination stress, stability
統計
Statistics
本論文已被瀏覽 5794 次,被下載 120
The thesis/dissertation has been browsed 5794 times, has been downloaded 120 times.
中文摘要
隨著資訊數位化的演進,主動式的平面顯示器的應用被大量的提出,大尺寸的家用電視、高畫質的攜帶式資訊產品、3D立體顯示器科技也快速發展,這些新穎的應用將使現有的製作技術與薄膜電晶體受到挑戰,對於做為畫素開關元件以及電流驅動元件的薄膜電晶體之要求也隨之增加。現今廣泛應用的非晶矽薄膜電晶體而言,其電子遷移率較低(< 1 cm2/V.s),擁有較高載子遷移率的非晶態金屬氧化物薄膜電晶體可望被應用在未來的高解析與高操作頻率之顯示器。
本論文前部分著重在無保護層之非晶態鋅錫氧化物與銦鎵鋅氧化物薄膜電晶體之電性與可靠度分析。首先探討氧化物薄膜電晶體在閘極電壓下之可靠度,在正閘極電壓操作下呈現明顯的啟始電壓向右偏移,可能由於電子被捕獲在主動層與閘極絕緣層介面,然而元件在不同環境氣氛下卻有不同的啟始電壓飄移與移除電壓後不同程度的恢復特性。因此,氧化物薄膜電晶體於正閘極電壓操作下的不穩定性是由於環境中氧氣的吸附所造成之啟始電壓飄移所主導。此外,當元件在照光之後,光產生的電洞將可使吸附的氧氣脫附,而產生起始電壓向左飄移的情況,利用此一特性,將元件放置於氧氣環境中監控元件的電流變化,藉由照光的方式,可成功控制元件電流處與氧氣吸附與脫附之間的狀態,可應用為一個氧氣感應器。反之,針對環境氣氛對於元件的電流特性的影響極為劇烈情況下,我們引入一種在真空下照光與加熱的元件處理方式,可將元件上的吸附的氣體清除,當元件在處理前與處理後對於氧氣的的敏感度有顯著的改變,可以了解元件在真空下同時照光與加熱是一種有效回復元件初始特性的手法。此清除手法對於未來樣品進行覆蓋保護層前,將是一種有效改進元件製程的處理方式。同時,未覆蓋保護層的銦鎵鋅金屬氧化物薄膜電晶體在照光加熱處理後,元件於氧氣與模擬水氣的環境下有不同的電致延滯曲線,藉由此結果,可以釐清元件在正閘極偏壓下將會造成氧氣的吸附,而負偏壓是水氣吸附所導致的主動層內載子與淺缺陷增加的機制主導,使元件產生電性不穩定的情況。
接著,我們研究具有蝕刻終止層與保護層之非晶態銦鎵鋅氧化物薄膜電晶體電性與可靠度。藉由萃取通道電阻與接觸電阻之分析,可以發現元件之通道長度是需要加入一個修正通道長度,而不同的源極/汲極與主動層之接觸面積,將使元件內電子行走路徑更加集中。當氧化物薄膜電晶體應用於驅動液晶螢幕時,元件將長時間處於閘極負偏壓、汲極正偏壓與照光的情況,於是元件於此情況下之可靠度也相當急迫被研究與分析,實驗結果顯示在操作過後元件將呈現明顯的不對稱劣化,此一現象將是由於元件內不對稱的電洞被捕獲在主動層與閘極絕緣層介面的機制主導。根據此一情況,我們提出藉由增加主動層寬度與不改變元件長與寬的元件結構,可望改變元件內於照光下電洞分佈的情況,抑制元件於閘極負偏壓照光下元件之電性不穩定性。最後,我們探討元件具有源極/汲極與閘極不重疊程度之電性差異。實驗結果顯示即使汲極偏壓加大,當元件於源極與閘極間有一不重疊之區域(offset),將使元件呈現難以導通之情況。利用上述之電性,將此元件在照射紫外光時,元件卻又能呈現導通之電性。比較不同光波長之照光電性後,只有照射紫外光有此明顯差異。因此,此一元件將可在面板中當作紫外光感應器,且不需要增加面板製作上之成本。
Abstract
Due to the progress of digitized information, a number of studies have demonstrated the application of active-matrix flat panel display, such as ultra-large diaply (60 up inches), high resolution potable electronic device and non-glass 3-D display. These new applications bring a great challenge to the present device fabrication technology and conventional amorphous hydrogenated silicon (a-Si) TFT. For a switching TFT or driving TFT in next generation display, the electrical performance and reliability requirement of TFT is also increased. ZnO-based amorphous oxide semiconductors (AOSs), such as amorphous zinc-tin oxide (a-ZTO) and amorphous indium gallium zinc oxide (a-IGZO), TFTs show a great potential to replace conventional a-Si TFT due to its high field effect mobility and low off-state current, meeting the requirements of high frame rate operation and high resolution for next generation displays.
The first part of this thesis investigates the electrical characteristic and stability of passivation-free a-ZTO and a-IGZO thin film transistors (TFTs). After positive gate bias stress, the ID-VG curve only shifts in the positive direction with tiny variations in subthreshold slope. In general, this result has been suggested to be due to electrons trapping in the preexisting traps located at the interface or in the gate dielectric. The shift of threshold voltage (VT) during the stress in atmospheric ambient is more serious than that in the vacuum, but the recovery phenomenon in atmospheric ambient is slighter. Thus, the principal mechanism which leads to the threshold voltage instability of ZTO TFTs under positive gate bias stress is bias-induced oxygen adsorption occurring in the surrounding environment. After illumination with visible light, the VT of ZTO TFT in oxygen ambient shows drastic negative shifts. This phenomenon suggests that the photogeneration of holes discharges the negatively charged adsorbed oxygen ions. Using illumination with visible light in oxygen-rich ambient, a significant increase in drain current of nearly 104 times occurs with fixed gate and drain voltages. It is expected that an optimized method of illumination can help to reset the electrical characteristics or distinguish the on/off state of this reliable oxygen sensor.
Because of environment dependent electrical characteristic for devices, a photo-thermal-treatment in vacuum ambient are proposed to desorb the chemisorbed gases on the backchannel of device. Sequences of measurements made in both vacuum and oxygen ambient reveal the most pronounced threshold voltage (VT) shift, i.e., the highest sensitivity of oxygen, occurs in a device with photo-thermal-treatment. Thus, in order to obtain more stable electrical characteristics, the proposed photo-thermal treatment would be conducted to improve device electrical stability. Moreover, after photo-thermal-treatment, the electrical hysteresis phenomenon of a-IGZO TFTs can be associated to the chemisorption of oxygen as increasing VG during the on-state of a-IGZO TFTs. On the contrary, the hydroxylated O-vacancies as forming O-H species in a-IGZO are generated from dissociation of H2O molecules in environment, causing large states in a-IGZO. Thus, the created states from moisture increase the hysteresis C-V phenomenon by accelerating the electron trapping rate.
In the second part, the electrical characteristic and stability of via-type a-IGZO TFTs with passivation layer are investigated. By analyzing channel resistance and parasitic resistance of device, the extracted effective channel length is larger than the mask-defined channel length. The effective channel length, i.e., the possible electron transfer path, in each device decreases with decreasing contact area between Source/drain via-contact and a-IGZO. In addition, when an a-IGZO TFT is used as the pixel switch in a liquid crystal display (LCD), the device normally experiences off-state bias (or negative gate bias), drain bias and inevitable back-light illumination. Therefore, the instability of a-IGZO TFTs under negative bias illumination stress (NBIS) has become a crucial subject of study. The experiment result shows that more hole trapping in the preexisting interface traps can be expected near the S region due to the drain-bias-induced lateral electrical field in a-IGZO, which results in asymmetrical hole trapping in the device. Using a-IGZO TFTs with a fringe field structure, the negative VT shift of ID-VG after NBIS can be reduced when the μm/side of a-IGZO is increased.
Finally, the electrical properties and photo sensitivity of a-IGZO TFTs with offset structure between gate electrode to source/drain are investigated. However, the ID–VG characteristic of device with an 8-μm-source-offset structure at VD = 20 V shows almost no turn-on behavior. During UV illumination, the ID of 8-μm-source-offset a-IGZO TFT under positive VG and VD is measured up to 10-6 A. Thus, by back UV illumination, the source-offset a-IGZO TFT can be utilized logically to develop an UV sensor without increasing fabrication cost.
目次 Table of Contents
Acknowledgements i
摘要……………………………………………………………………...iv
Abstract………………………………………………………………...vii
Contents………………………………………………………………...xii
Figure Captions xv
Chapter 1 Introduction 1
1.1 General Background of Thin-Film Transistor (TFT) 1
1.2 Overview of amorphous oxide semiconductors 2
1.3 Overview of amorphous oxide semiconductor thin film transistor technology 4
1.4 Origin of High Electron Mobility 5
1.5 Why Use ZnO-based semiconductors 6
1.6 Motivation 7
References: 10
Chapter 2 Origin of threshold voltage instability and device application for passivation-free amorphous oxide semiconductors thin film transistor 15
2.1 Bias-induced oxygen adsorption in zinc tin oxide thin film transistors under dynamic stress 15
2.1.1 Introduction: 15
2.1.2 Experiment: 16
2.1.3 Results and Discussions: 17
2.1.3a Degradation behavior of electrical characteristics for ZTO TFT after dynamic bias Stress 17
2.1.3b Investigation of the degradation behavior by fitting charge trapping model for ZTO TFT 19
2.1.4 Summary: 21
References: 23
2.2 High-stability oxygen sensor based on amorphous zinc tin oxide thin film transistor 30
2.2.1 Introduction: 30
2.2.2 Experiment: 31
2.2.3 Results and Discussions: 32
2.2.3a Investigating electrical characteristics of a-ZTO TFT after illumination in oxygen ambient 32
2.2.3b Design and optimization of a-ZTO TFT as an oxygen sensor 33
2.2.4 Summary: 36
References: 37
2.4 Analysis of Electrical Characteristics and Reliability Change of Zinc-Tin-Oxide Thin-Film Transistors by Photo-Thermal Treatment 43
2.4.1 Introduction: 43
2.4.2 Experiment: 44
2.4.3 Results and Discussions: 45
2.4.3a Oxygen sensitivity of a-ZTO TFT after photo-thermal treatment process 45
2.4.3b Influence of electrical degradation for a-ZTO TFT after photo-thermal treatment 48
2.4.4 Summary: 51
References: 52
2.5 Characterization of Environment-Dependent Hysteresis in Indium Gallium Zinc Oxide Thin Film Transistors 59
2.5.1 Introduction: 59
2.5.2 Experiment: 59
2.5.3 Results and Discussions: 61
2.5.3a Influence of oxygen on the electrical hysteresis for a-IGZO TFT 61
2.5.3b Influence of moisture on the electrical hysteresis for a-IGZO TFT 66
2.5.4 Summary: 68
References: 70
Chapter 3 Investigation of physical mechanism and electrical instability for via-type a-IGZO TFT 78
3.1 Influence of source and drain contact area on the electrical properties and stability of via-type In-Ga-Zn-O thin-film transistors 79
3.1.1 Introduction: 79
3.1.2 Experiment: 80
3.1.3 Results and Discussions: 81
3.1.3a Effective channel length and parasitic resistance for via-contact a-IGZO TFT 81
3.1.3b Influence of CNT on the electrical stability of via-type α-IGZO TFTs under hot-carrier stress 84
3.1.4 Summary 88
References: 89
3.2 The suppressed negative bias illumination-induced instability in In-Ga-Zn–O thin film transistors with fringe field structure 98
3.2.1 Introduction: 98
3.2.2 Experiment: 100
3.2.3 Results and Discussions: 101
3.2.3a Negative bias illumination stress-induced electrical instability of a-IGZO TFT 101
3.2.3b The suppression of illumination negative-bias instability on InGaZnO thin film transistors using fringe field structure 103
3.2.4 Summary 105
References: 107
3.3 In-Ga-Zn-O thin film transistor as an UV sensor using Offset structure 116
3.3.1 Introduction: 116
3.3.2 Experiment: 116
3.3.3 Results and Discussions: 117
3.3.3a Analysis of Electrical characteristic for via-contact a-IGZO TFTs with source-/drain- offset structures 117
3.3.3b High Photo-response UV Sensor Based on Source-Offset In-Ga-Zn-O Thin Film Transistor 120
3.3.4 Summary 122
References: 124
Chapter 4 Conclusion 132
Publication list 136
參考文獻 References
[1.1]: H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakano, IEDM Tech. Dig, p. 563, (1991)..
[1.2]: Y. Matsueda, R. Kakkad, Y. S. Park, H. H. Yoon, W. P. Lee, J. B. Koo, and H. K. Chung, SID Tech. Dig., p.1116, (2004).
[1.3]: T. Kamiya, K. Nomura and H. Hosono, Science and Technology of Advanced. Material, 11, 044305, (2010).
[1.4]: J.-H. Lee, W.-J. Nam, B.-K. Kim, H.-S. Choi, Y.-M. Ha, and M.-K. Han, IEEE Electron Device Lett., 27, 10, p.830–833, Oct. (2006)
[1.5]: Mutsumi Kimura, and Shinji Ima, IEEE Electron Device Letters, 31, 9, p.963 (2010)
[1.6]: Matsueda Y, Digest of Int. Transistor Conf., p.314 (2010)
[1.7]: Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater., 15, p.353 (2003)
[1.8]: H. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish, Semiconducting transparent thin films, Institute of Physics Publishing, Bristol and Philadelphia, 1995
[1.9]: Huaxiang Yin, Sunil Kim, Hyuck Lim, Yosep Min, IEEE TRANSACTIONS ON ELECTRON DEVICES, 55, 8, (2008)
[1.10]: Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya , Masahiro Hirano & Hideo Hosono, Nature, 432, p.488 (2004).
[1.11]: L. Gerward, J. S. Olsen, J. Synchrotron Radiat., 2, 233 (1995).
[1.12]: J. E. Jaffe, A. C. Hess, Phys. Rev. B, 48, p.7903 (1993).
[1.13]: Hideo Hosono, Journal of Non-Crystalline Solids, 352, 9, P. 851 (2006)
[1.14]: P. F. Carcia, R. S. McLean, M. H. Reilly, G. Nunes, Jr, Appl. Phys. Lett, 82, 7, p. 1117, (2003)
[1.15]: K. Kaiya, K. Omichi, N. Takahashi, T. Nakamura, S. Okamoto, H. Yamamoto, Thin Solid Films, 409, p.116 (2002)
[1.16]: M. J. Alam, D. C. Cameron, J. Vac. Sci. Technol A, 19, 4, p.1642 (2001).
[1.17]: J. H. Lee, P. Lin, J. C. Ho, C. C. Lee, Electrochemical and Solid-State Letters, 9, 4, p. G117 (2006).
[1.18]: Arun Suresh, Patrick Wellenius, Anuj Dhawan, John uth, Appl Phys Lett., 90, 123512 (2007)
[1.19]: B. J. Kellett, A. Gauzzi, J. H. James, B. Dwir, D. Paveuna and F. K. Reinhart, Appl. Phys. Lett, 57, 2588, (1990).
[1.20]: Gun Hee Kim, Hyun Soo Kim, Hyun Soo Shin, Byun Du Ahn, Thin Solid Films, 517, 14, P. 4007-4010 (2009)
[2.1.1]:R. B. M. Cross and M. M. De Souza, Applied Physics Letters, 89, p.263513 (20067)
[2.1.2]: F. R. Libsch and J. Kanicki, Applied Physics Letters, 62, p.1286 (1993)
[2.1.3]:Yeon-Keon Moon, Sih Lee, Woong-Sun Kim, Byung-Woo Kang, and Chang-Oh Jeong, Applied Physics Letters, 95, p.013507 (2009).
[2.1.4]: Donghun Kang, Hyuck Lim, Changjung Kim, Ihun Song, Jaechoel Park, and Youngsoo Park, Applied Physics Letters, 90, p.192101 (2007)
[2.1.5]:Jin-Seong Park, Jae Kyeong Jeong, Hyun-Joong Chung, Yeon-Gon Mo, and Hye Dong Kim, Applied Physics Letters, 92, p.072104 (2008)
[2.1.6]:Jae Kyeong Jeong, Hui Won Yang, Jong Han Jeong, Yeon-Gon Mo, and Hye Dong Kim, Applied Physics Letters, 93, p.123508 (2009)
[2.1.7]: R. B. M. Crossa and M. M. De Souza, Applied Physics Letters, 89, p.2635132 (2006)
[2.1.8]: Shin-Chuan Chiang, Chin-Chih Yu, Min-Chi Wang, Ting-Chang Chang, Taiwan Display Conference, B106, (2008)
[2.1.9]: T. Cho, J. M. Lee, J. H. Lee, and H. I. Kwon, Semiconductor Science And Technology, 24, p.015013 (2009)
[2.1.10]:Po-Tsun Liu, Yi-Teh Chou, and Li-Feng Teng, Applied Physics Letters, 95, p.233504 (2009)
[2.1.11]:Jeong-Min Lee, In-Tak Cho, Jong-Ho Lee, and Hyuck-In Kwon, Applied Physics Letters, 93, p.093504 (2008).
[2.1.12]:Y Takahashi, M Kanamori, A Kondoh, H Minoura, Japanese Journal of Applied Physics Part1 , 33, P.6611 (1994)
[2.1.13]: Stuart A. Hoenig and John R. Lane, Surface Science, 11, P.163 (1968)
[2.2.1]:Toshio Kamiya, Kenji Nomura, and Hideo Hosono, Journal of Display Technology, 5, 7, p273 (2009)
[2.2.2]:Wan-Fang Chung, Ting-Chang Chang, Hung-Wei Li, Chi-Wen Chen, Electrochemical and Solid-State Letters, 14, H114 (2010)
[2.2.3]:Wan-Fang Chung, Ting-Chang Chang, Hung-Wei Li, Shih-Ching Chen, and Yu-Chun Chen, Applied Physics Letters, 98, p.152109 (2011)
[2.2.4]:Y Takahashi, M Kanamori, A Kondoh, H Minoura, Japanese Journal of Applied Physics , 33, P.6611 (1994)
[2.2.5]:Shin-Chuan Chiang, Chin-Chih Yu, Min-Chi Wang, Ting-Chang Chang, Taiwan Display Conference, B106, (2008)
[2.2.6]:Jiming Bao, Ilan Shalish, Zhihua Su, Ron Gurwitz, Federico Capasso, Xiaowei Wang and Zhifeng Ren, Nanoscale Research Letters, 6, p.404 (2011)
[2.2.7]:Yu-Chun Chen, Ting-Chang Chang, Hung-Wei Li, Shih-Ching Chen, Jin Lu, Wan-Fang Chung, Applied Physics Letters, 96, p.262104 (2010).
[2.2.8]:P. Görrn, M. Lehnhardt, T. Riedl, and W. Kowalsky, Applied Physics Letters, 91, p.193504 (2007)
[2.2.9]:Te-Chih Chen, Ting-Chang Chang, Tien-Yu Hsieh, Shih-Ching Chen, Chia-Sheng Lin, Ming-Chin Hung, Applied Physics Letters, 97, p.192103 (2010)
[2.2.10]:J. Lagowski, E. S. Sproles, and H. C. Gatos, Journal of Applied Physics, 48, p.3566 (1977)
[2.4.1]: Toshio Kamiya, Kenji Nomura and Hideo Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010).
[2.4.2]:Ting-Chang Chang, Fu-Yen Jian, Shih-Cheng Chen and Yu-Ting Tsai, Mater. Today 14, 12, P608 (2011)
[2.4.3]: H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Applied Physics Letters, 86, p.013503 (2005).
[2.4.4]: K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004)
[2.4.5]: T-Y Hsieh, T-C Chang, T-C Chen, M-Y Tsai, Y-T Chen, and F-Y Jian, IEEE Electron Device Letters, 33, 7, p.1000 (2010)
[2.4.6]:T-C Chen, T-C Chang, T-Y Hsieh, W-S Lu, and F-Y Jian, Applied Physics Letters, 99, p.022104 (2011)
[2.4.7]:T-Y Hsieh, T-C Chang, T-C Chen, Y-T Chen, M-Y Tsai, and A-K Chu, IEEE Transactions on Electron Devices, 59, 12, p.3389 (2012)
[2.4.8]:C.-K. Lee, H. Y. Jung, S. Y. Park, B. G. Son, C.-K. Lee, H. J. Kim, R. Choi, D.-H.n Kim, J.-U. Bae, W.-S. Shin, and J. K. Jeong, IEEE Electron Device Letters, 34, 2, p.253 (2013)
[2.4.9]:Y-C Chen, T-C Chang, H-W Li, S-C Chen, Jin Lu, W-F Chung, Applied Physics Letters, 96, p.262104 (2010)
[2.4.10]:Shinhyuk Yang, Doo-Hee Cho, Min Ki Ryu, Sang-Hee Ko Park, Chi-Sun Hwang,Jin Jang, and Jae Kyeong Jeong, Applied Physics Letters, 96, p. 213511 (2010)
[2.4.11]:T-C Chen, T-C Chang, T-Y Hsieh, S-C Chen, C-S Lin, M-C Hung, Applied Physics Letters, 97, p.192103 (2010)
[2.4.12]: J. S. Park, T. S. Kim, K. S. Son, J. S. Jung, K.-H. Lee, J.-Y. Kwon, B. Koo, and S.n Lee, IEEE Electron Device Letters, 31, 5, p.440 (2010)
[2.4.13]:J. Lagowski, E. S. Sproles, and H. C. Gatos, Journal of Applied Physics, 48, p.3566 (1977)
[2.4.14]:W-F Chung, T-C Chang, H-W Li, S-C Chen, and Y-C Chen, Applied Physics Letters, 98, p.152109 (2011)
[2.4.15]:T. Cho, J. M. Lee, J. H. Lee, and H. I. Kwon, Semiconductor Science And Technology, 24, p.015013 (2009)
[2.4.16]:Stuart A. Hoenig and John R. Lane, Surface Science, 11, P.163 (1968)
[2.5.1]:M. E. Lopes, H. L. Gomes, M. C. R. Medeiros, and P. Barquinha, Applied Physics Letters, 95, p.063502 (2009)
[2.5.2]:Jae Kyeong Jeong, Hui Won Yang, Jong Han Jeong, and Yeon-Gon Mo, Applied Physics Letters, 93, p.123508 (2008)
[2.5.3]:Yu-Chun Chen, Ting-Chang Chang, Hung-Wei Li, and Shih-Ching Chen, Applied Physics Letters, 96 p.262104 (2010)
[2.5.4]:Shinhyuk Yang, Doo-Hee Cho, Min Ki Ryu, and Sang-Hee Ko Park, Applied Physics Letters, 96, p.213511 (2010)
[2.5.5]:Te-Chih Chen, Ting-Chang Chang, Tien-Yu Hsieh, and Wei-Siang Lu, Applied Physics Letters, 99, p.022104 (2011)
[2.5.6]:Kwang-Hee Lee, Ji Sim Jung, Kyoung Seok Son, and Joon Seok Park, Applied Physics Letters, 95, p. 232106 (2009)
[2.5.7]:Jae-Hoon Lee, Kwang-Sub Shin, Joong-Hyun Park, and Min-Koo Han, Journal of the Korean Physical Society, 48, p. s76 (2006)
[2.5.8]:Jin-Seong Park, Jae Kyeong Jeong, Hyun-Joong Chung, and Yeon-Gon Mo, Applied Physics Letters, 92, p. 072104 (2008)
[2.5.9]:Wan-Fang Chung, Ting-Chang Chang, Hung-Wei Li,and Chi-Wen Chen, Electrochemical and Solid-State Letters, 14, p. H114 (2010)
[2.5.10]:Y Takahashi, M Kanamori, A Kondoh, H Minoura, Japanese Journal of Applied Physics Part1 , 33, P.6611 (1994)
[2.5.11]:Himchan Oh, Sung-Min Yoon, Min Ki Ryu, and Chi-Sun Hwang, Applied Physics Letters, 97, p. 183502 (2010)
[2.5.12]: Kenji Nomura, Toshio Kamiya, Hiromichi Ohta, Masahiro Hirano, and Hideo Hosono, Applied Physics Letters, 93, p. 192107 (2008)
[2.5.13]: Olga Dulub, Bernd Meyer, and Ulrike Diebold, PHYSICAL REVIEW Letters, 95, p. 136101(2005)
[3.1.1]: Kiyoshi Kato, Yutaka Shionoiri, Yusuke Sekine, Kazuma Furutani, and Takehisa Hatano, Japanese Journal of Applied Physics, 51, p021201 (2012)
[3.1.2]: Arun Suresh, Patrick Wellenius, Vinay Baliga, Haojun Luo, Leda M. Lunardi, and John F. Muth, IEEE Electron Device Letters, 31, 4, p.317 (2010)
[3.1.3]: T-C Chen, T-C Chang, T-Y Hsieh, W-S Lu, and F-Y Jian, Applied Physics Letters, 99, p.022104 (2011)
[3.1.4]: T-Y Hsieh, T-C Chang, T-C Chen, M-Y Tsai, Y-T Chen, and F-Y Jian, IEEE Electron Device Letters, 33, 7, p.1000 (2012)
[3.1.5]: T-Y Hsieh, T-C Chang, T-C Chen, M-Y Tsai, Y-T Chen, and Y-C Chung, Applied Physics Letters, 100, p.232101 (2012)
[3.1.6]: Mutsumi Kimura, and Shinji Imai, , IEEE Electron Device Letters, 31, 9, p.963 (2010)
[3.1.7]: Linfeng Lan, Miao Xu, Junbiao Peng, Hua Xu, Min Li, and Dongxiang Luo, journal of Applied Physics, 110, p.103703 (2011)
[3.1.8]: Dong Han Kang, In Kang, Sang Hyun Ryu, and Jin Jang, IEEE Electron Device Letters, 32, 10, p.1385 (2011)
[3.1.9]: Ihun Song, Sunil Kim, Huaxiang Yin, Chang Jung Kim, , and Jaechul Park, IEEE Electron Device Letters, 29, 6, p.549 (2008)
[3.2.1]: Toshio Kamiya, Kenji Nomura and Hideo Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010)
[3.2.2]: H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Applied Physics Letters, 86, p.0135039 (2005)
[3.2.3]: Chen M-C, Chang T-C, Huang S-Y, Chen S-C, Hu C-W, Tsai C-T and Sze S M Electrochem. Solid-State Lett.13, H191 (2010)
[3.2.4]: Ting-Chang Chang, Fu-Yen Jian, Shih-Cheng Chen and Yu-Ting Tsai, Mater. Today 14, 12, P608 (2011)
[3.2.5]: Jeong-Min Lee, In-Tak Cho, Jong-Ho Lee, and Hyuck-In Kwon, Japanese Journal of Applied Physics, 48, p100202 (2009)
[3.2.6]: Matsueda Y, Digest of Int. Transistor Conf. ,p 314, (2010)
[3.2.7]: T-C Chen, T-C Chang, T-Y Hsieh, W-S Lu, and F-Y Jian, Applied Physics Letters, 99, p.022104 (2011)
[3.2.8]: T-Y Hsieh, T-C Chang, T-C Chen, M-Y Tsai, Y-T Chen, and F-Y Jian, IEEE ELECTRON DEVICE LETTERS, 33, 7, p.1000 (2011)
[3.2.9]: T-Y Hsieh, T-C Chang, T-C Chen, M-Y Tsai, Y-T Chen, and Y-C Chung, Applied Physics Letters, 100, p.232101 (2012))
[3.2.10]: Kenji Nomura, Toshio Kamiya, and Hideo Hosono, Applied Physics Letters, 99, p.053505 (2011)
[3.2.11]: Byungki Ryu, H-K Noh, E-A Choi, and K. J. Chang, Applied Physics Letters, 97, p.022108 (2010))
[3.2.12]: J. H. Kim, Un Ki Kim, Y. J. Chung, J. S. Jung, S. H. Ra, H. S. Jung, C. S. Hwang, J. K. Jeong and S. Y. Lee, Applied Physics Letters, 98, p.023507 (2011)
[3.2.13]: S-Y Lee, S-J Kim, Y. W. Lee, W-G Lee, K-S Yoon, and M-K Han, Japanese Journal of Applied Physics, 51, p.03CB03 (2012)
[3.3.1]: Kiyoshi Kato, Yutaka Shionoiri, Yusuke Sekine, Kazuma Furutani, and Takehisa Hatano, Japanese Journal of Applied Physics, 51, p021201 (2012)
[3.3.2]: Arun Suresh, Patrick Wellenius, Vinay Baliga, Haojun Luo, Leda M. Lunardi, and John F. Muth, IEEE Electron Device Letters, 31, 4, p.317 (2010)
[3.3.3]: T-C Chen, T-C Chang, T-Y Hsieh, W-S Lu, and F-Y Jian, Applied Physics Letters, 99, p.022104 (2011)
[3.3.4]: T-Y Hsieh, T-C Chang, T-C Chen, M-Y Tsai, Y-T Chen, and F-Y Jian, IEEE Electron Device Letters, 33, 7, p.1000 (2012)
[3.3.5]: T-Y Hsieh, T-C Chang, T-C Chen, M-Y Tsai, Y-T Chen, and Y-C Chung, Applied Physics Letters, 100, p.232101 (2012)
[3.3.6]: Mutsumi Kimura, and Shinji Imai, , IEEE Electron Device Letters, 31, 9, p.963 (2010)
[3.3.7]: Linfeng Lan, Miao Xu, Junbiao Peng, Hua Xu, Min Li, and Dongxiang Luo, journal of Applied Physics, 110, p.103703 (2011)
[3.3.8]: Dong Han Kang, In Kang, Sang Hyun Ryu, and Jin Jang, IEEE Electron Device Letters, 32, 10, p.1385 (2011)
[3.3.9]: Ihun Song, Sunil Kim, Huaxiang Yin, Chang Jung Kim, , and Jaechul Park, IEEE Electron Device Letters, 29, 6, p.549 (2008)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code