Responsive image
博碩士論文 etd-0626114-115159 詳細資訊
Title page for etd-0626114-115159
論文名稱
Title
熱氧化氮化鈦至銳鈦礦相轉變機構之研究
A Study of the Mechanism of TiN to Anatase Transition by Thermal Oxidation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-26
繳交日期
Date of Submission
2014-07-26
關鍵字
Keywords
離子束濺鍍、磊晶、薄膜、氮化鈦、銳鈦礦、雙晶、熱氧化
Thermal oxidation, Twin, TiN, Anatase, Thin film, Epitaxy, Ion beam sputtering
統計
Statistics
本論文已被瀏覽 5752 次,被下載 83
The thesis/dissertation has been browsed 5752 times, has been downloaded 83 times.
中文摘要
本實驗以鈦為靶材,使用離子束濺鍍法,並通入氮氣,在(001)氯化鈉單晶基板上製備(001)氮化鈦磊晶薄膜。再將試片進行不同溫度及時間之大氣熱處理,接著使用穿透式電子顯微鏡分析薄膜之相轉變。
於450 °C 4-280 h熱氧化過程當中,形成與氮氧化鈦有平行晶向關係之Z=[001] 銳鈦礦。此外,還有Z=[010] A之銳鈦礦生成,與氮氧化鈦亦有晶向關係。
而於400 °C及500 °C時,在(100)界面會形成序化相,此相並可形成雙晶,並以氮氧化鈦(100)為序化面及雙晶平面。另外,加長熱氧化時間觀察到形成未知相X,與(001)氮氧化鈦有晶向關係;同時也存在Z=[010] A之銳鈦礦。目前認為序化之雙晶相會先轉為未知相X,當時間拉長,再轉為銳鈦礦。
Abstract
This experiment used ion beam sputtering method to prepare epitaxy TiN (001) thin film on NaCl (001) surface by using Ti as target in a nitrogen atmosphere. The thin films were thermally oxidized in air at different temperatures to induce phase transition. Transmission electron microscopy will be used for analysis.
After thermal oxidation at 450 °C for 4-280 h, anatase of [001] zone was formed and has a parallel orientation relationship with the substrate titanium oxynitride film. In addition, anatase of [010] zone also formed which also has an orientation relationship with titanium oxynitride.
Thermal oxidation at 400 °C and 500 °C, titanium oxynitride formed ordered structure with the (100) Ti(O,N) as interface, which could also form twin by using the (100) plane as twin plane. Further oxidation caused the appearance of an unknown phase X, which has an orientation relationship with titanium oxynitride, is formed. Anatase of [010] zone was also observed.It is suggested that the ordered twin phase may turn into the unknown phase X. With further oxidation, both phases then turn into anatase.
目次 Table of Contents
論文審定書………………………………………………………………………….……i
誌謝………………………………………………………………………………….......ii
摘要………………………………………………………………………………….…..iv
Abstract……………………………………………………………………………….…v
目錄………………………………………………………………………………….…..vi
表目錄…………………………………………………………………………….….…viii
圖目錄……………………………………………………………………………….…..ix
第一章 簡介………….………………………………………………………….………1
1.1 二氧化鈦簡介………………………………………………………………..……1
1.2 文獻回顧……………………………………………………………………..……2
1.2.1 非金屬離子摻雜至TiO2……………………………………………….………2
1.2.2 TiN相轉變至N-doped TiO2…………………………………………………...3
1.2.3 TiO至anatase相轉變之機制………………………………………………….4
1.2.4 磊晶(001)A之活性………………………………………………………….….5
1.2.5 TiN之雙晶面及方向…………………………………………………………...5
1.2.6 研究目的…………………………………………………………………….....6
第二章 實驗步驟與分析方法…………….…………. ………………………………..7
2.1 薄膜試片製備……………………………………………………………………..7
2.2 穿透式電子顯微鏡分析…………………………………………………………..7
第三章 實驗結果與討論….…………….……………………………………………...9
3.1 初鍍膜………………………………………………………………………….…9
3.2 400 °C 熱氧化處理………………………………………………………………9
3.3 450 °C 熱氧化處理……………………………………………………………..12
3.4 500 °C 熱氧化處理……………………………………………………………..15
第四章 結論…………………………………………………………………………...18
第五章 未來工作……………………………………………………………………...19
第六章 參考文獻……………………………………………………………………...20
參考文獻 References
[1] E. M. Levin, H. F. McMurdie, Phase diagrams for ceramists, The American ceramic society, Inc., vol.76, 4150-4999(1975).
[2] S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr., Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2, Science, 297 (2002) 2243.
[3] H. Irie, Y. Watanabe, K. Hashimoto, C. Lett., Carbon-doped anatase TiO2 powders as a visible-light sensitive photo-catalyst, 32 (2003) 772.
[4] 林登元,二氧化鈦奈米管製備及催化應用,國立中央大學化學研究所碩士論文,2005。
[5] R. Sasikala, V. Sudarsan, C. Sudakar, R. Naik, T. Sakuntala, S.R. Bharadwaj, Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide, Int. J. Hydrogen Energy, 33 (2008) 4966.
[6] C. Liu, X. Tang, C. Mo, Z. Qiang, Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium, J. Solid State Chem., 181 (2008) 913.
[7] X. Yang, C. Cao, L. Erickson, K. Hohn, R. Maghirang, K. Klabunde, Photo-catalytic degradation of rhodamine B on C, S, N, and Fe-doped TiO2 under visible-light irradiation, Appl. Catal. B Environ., 91 (2009) 657.
[8] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 293 (2001) 269.
[9] O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates Jr., Photochemical Activity of Nitrogen-Doped Rutile TiO2(110) in Visible Light, J. Phys. Chem. B, 108 (2004) 6004.
[10] H. Wei, Y. Wu, N. Lun, F. Zhao J. Mater., Preparation and photocatalysis of TiO2nanoparticles co-doped with nitrogen and lanthanum, Sci.-Mater. Electron., 39 (2004) 1305.
[11] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, J. Phys. Chem. B, 107 (2003) 5483.
[12] J.M. Mwabora, T. Lindgren, E. Avendano, T.F. Jaramillo, J. Lu, S.-E. Lindquist, C.-G. Granqvist, Structure, composition and morphology of photoelectrochemically active TiO2-xNx thin films deposited by reactive magnetron dc sputtering, J. Phys. Chem. B, 108 (2004) 20193.
[13] Y. Nakano, T. Morikawa, T. Ohwaki, Y. Taga, Deep-level optical spectroscopy investigation of N-doped TiO2 films, Appl. Phys. Lett., 86 (2005) 132104.
[14] Q. Ye, P. Y. Liu, Z. F. Tang, L. Zhai, Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering, Vacuum, 81 (2007) 627.
[15] O. Diwald, T. L. Thompson, E. G. Goralski, S. D. Walck, J.T. Yates Jr., The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals, J. Phys. Chem. B, 108 (2004) 52.
[16] M. Batzill, E. H. Morales, U. Diebold, Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase., Phys. Rev. Lett., 96 (2006) 026103.
[17] A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes, Nano Lett., 6 (2006) 1080.
[18] H. Li, J. Li, Y. Huo, Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions, J. Phys. Chem. B, 110 (2006) 1559.
[19] J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale, J. Phys. Chem. B, 108 (2004) 1230.
[20] S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2, J. Phys. Chem. B, 108 (2004) 19384.
[21] Z. Lin, A. Orlov, R.M. Lambert, M.C. Payne, New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO2, J. Phys. Chem. B, 109 (2005) 20948.
[22] P. Simon, B. Pignon, B. Miao, S. Coste-Leconte, Y. Leconte, S. Marguet, P. Jegou, B. Bouchet-Fabre, C. Reynaud, N. Herlin-Boime, N-Doped Titanium Monoxide Nanoparticles with TiO Rock-Salt Structure, Low Energy Band Gap, and Visible Light Activity, Chem. Mater., 22 (2010) 3704.
[23] S.-M. Oh, T. Ishigaki, Preparation of pure rutile and anatase TiO2 nanopowders using RF thermal plasma, Thin Solid Films, 457 (2004) 186.
[24] X. Zhou, F. Peng, H. Wang, H. Yu, J. Yang, Preparation of nitrogen doped TiO2 photocatalyst by oxidation of titanium nitride with H2O2, Mater. Res. Bull., 46 (2011) 840.
[25] S. Livraghi, M.R. Chierotti, E. Giamello, G. Magnacca, M.C. Paganini, G. Cappelletti, C.L. Bianchi, Nitrogen-Doped Titanium Dioxide Active in Photocatalytic Reactions with Visible Light: A Multi-Technique Characterization of Differently Prepared Materials, J. Phys. Chem. C, 112 (2008) 17244.
[26] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides, Science, 293 (2001) 269.
[27] J.L. Gole and J.D. Stout, Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale, J. Phys. Chem. B, 108 (2004) 1230.
[28] H. Irie, Y. Watanabe, K. Hashimoto, Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders, J. Phys. Chem. B 107 (2003) 5483.
[29] O. Diwald, T.L. Thompson, T. Zubkov, E.G. Goralski, S.D. Walck, J.T. Yates, Jr., Photochemical Activity of Nitrogen-Doped Rutile TiO2 (110) in Visible Light, J. Phys. Chem. B 108 (2004) 6004.
[30] C.H. Kao, S.W. Yeh, H.L. Huang, D. Gan, P. Shen, Study of the TiO to anatase transformation by thermal oxidation of Ti film in air, J. Phys. Chem. C, 115 (2011) 5648.
[31] C.H. Kao, J.H. Tsai, S.W. Yeh, H.L. Huang, D. Gan, P. Shen, Growth of epitaxial anatase TiO2 (001) thin film on NaCl (001) substrate by ion beam sputtering and thermal annealing, Jpn. J. Appl. Phys., 51 (2012) 0435502.
[32] Y.L. Chung, D. Gan, K.L. Ou, S.Y. Chiou, Formation of anatase and TiO from Ti thin film after anodic treatment and thermal annealing, J. Electrochem. Soc., 158 (2011) C319.
[33] Y.L. Chung, D. Gan, K.L. Ou, The Ti to TiO and TiO to Anatase Transformations Induced by Anodizing and Annealing Treatments of Ti thin film, J. Electrochem. Soc., 159 (2012) C133.
[34] C.L. Lai, A study of the TiO to anatase transformation in the
preparation of TiO2 by sol-gel method, Master's thesis, National Sun Yat-Sen University, 2013.
[35] X.Q. Gong, A. Selloni, Reactivity of Anatase TiO2 Nanoparticles:  The Role of the Minority (001) Surface, J. Phys. Chem. B, 109 (2005) 19560.
[36] A. S. Barnard, P. Zapol, Predicting the Energetics, Phase Stability, and Morphology Evolution of Faceted and Spherical Anatase Nanocrystals, J. Phys. Chem. B 108 (2004) 18435.
[37] M. Lazzeri, A. Vittadini, A. Selloni, Structure and energetics of stoichiometric TiO2 anatase surfaces, Phys. Rev. B 63 (2001) 155409.
[38] H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, G.Q. Lu, Anatase TiO2 single crystals with a large percentage of reactive facets, Nature 453 (2008) 638.
[39] H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, G.Q. Lu, Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets, J. Am. Chem. Soc. 131 (2009) 4078.
[40] W.Q. Fang, X.Q. Gong, H.G. Yang, On the Unusual Properties of Anatase TiO2 Exposed by Highly Reactive Facets, J. Phys. Chem. Lett., 2 (2011) 725.
[41] F. Tian, Y. Zhang, J. Zhang, C. Pan, Raman Spectroscopy: A New Approach to Measure the Percentage of Anatase TiO2 Exposed (001) Facets, J. Phys. Chem., C 116 (2012) 7515.
[42] K.L. Lv, Q.J. Xiang, J.G. Yu, Effect of calcination temperature on morphology and photocatalytic activity of anatase TiO2 nanosheets with exposed {001} facets, Appl. Catalysis B-Environ. 104 (2011) 275.
[43] H. Li, Y. Zeng, T. Huang, L. Piao, Z. Yan, M. Liu, Hierarchical TiO2 nanospheres with dominant {001} facets: Facile synthesis, growth mechanism, and photocatalytic activity, Chem. -A Eur. J. 18 (2012) 7525.
[44] Z. Zhao, Z.C. Sun, H.F. Zhao, M. Zheng, P. Du, J.L. Zhao, H. Y. Fan, Phase control of hierarchically structured mesoporous anatase TiO2 microspheres covered with {001} facets, J. Mater. Chem., 22 (2012) 21965.
[45] L. Pan, J.J. Zou, S.B. Wang, X.Y. Liu, X.W. Zhang, W. Li, Morphology Evolution of TiO2 Facets and Vital Influences on Photocatalytic Activity, ACS Appl. Mater. Interfaces 4 (2012) 1650.
[46] S. Liu, J. Yu, M. Jaroneic, Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications, Chem. Mater., 23 (2011) 4085.
[47] J.W. Gerlach, T. Hoche, F. Frost, B. Rauschenbach, Ion beam assisted MBE of GaN on epitaxial TiN films, Thin Solid Films 459 (2004) 13.
[48] H.E. Cheng, T.T. Lin, M.H. Hon, Multiple twins induced <110> preferred growth in TiN and SiC films prepared by CVD, Scripta. Mater, 35 (1996) 113.
[49] H.E. Cheng, M.H. Hon, Texture formation in titanium nitride films prepared by chemical vapor deposition, J. Appl. Phys, 79 (1996) 8047.
[50] N. Umada, H. Yanagihara, A. Hatanaka, E. Kita, Orthogonally Twinned CrO2 (110) Epitaxial Films Grown on MgO (001) Substrates Buffered by Oxidized TiN, Jpn. J. Appl. Phys, 44 (2005) 6538.
[51] K. Han, G.C. Weatherly, Transmission electron microscopy investigation of twinning in titanium carbonitride, Philosophical Magazine Letters. 76 (1997) 247.
[52] R. Yu, Q. Zhan, L.L. He, Y.C. Zhou, H.Q. Ye, Si-induced twinning of TiC and formation of Ti3SiC2 platelets, Acta. Mater. 50 (2002) 4127
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code