Responsive image
博碩士論文 etd-0626116-100843 詳細資訊
Title page for etd-0626116-100843
論文名稱
Title
IGF-1對發育時期運動神經生長轉向分子機制之探討
Study on the Molecular Mechanisms of IGF-1-induced Turning Response at Developing Motoneuron
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
96
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-21
繳交日期
Date of Submission
2016-07-26
關鍵字
Keywords
IGF-1、神經導引因子、TRP channel、鈣離子儲存池、神經生長錐
TRP channel, insulin-like growth factor 1, sarcoplasmic reticulum, axon guidance, guidance cue
統計
Statistics
本論文已被瀏覽 5699 次,被下載 141
The thesis/dissertation has been browsed 5699 times, has been downloaded 141 times.
中文摘要
神經生長發育初期需要指引因子(guidance cues)或基質結合分子(substrate-bound molecules)與神經生長錐(nerve growth cone)的接受器結合,接著經由一連串的訊息傳遞路徑造成細胞骨架的重新排列,最終改變軸突的生長方向。雖然在胚胎發育時期運動神經與肌細胞形成突觸的過程中胰島素樣生長因子(Insulin-like growth factor-1,IGF-1)扮演重要的角色;根據研究也發現,胚胎發育時期骨骼肌細胞中IGF-1表現量相當高,直到神經-肌突觸建立完成後IGF-1的表現量才會下降。然而,IGF-1對於胚胎發育早期運動神經生長方向是否具有導引作用,目前還是不清楚的。
在本實驗中,主要探討IGF-1在胚胎發育時期造成神經生長錐偏轉現象(growth cone turning),以及訊息傳遞路徑。我們利用非洲爪蟾(Xenopus Laevis)的神經培養,以turning assay的實驗方式來探討單一特定分子IGF-1對axon guidance生長呈現趨向(attraction)或逆向(repulsion)的分布。在turning assay是使用細胞培養後4至10小時(胚胎發育時期)和24小時(成熟時期)的culture。注射用玻璃毛細管(直徑約 1 μm)以每秒1次,每次50 msec duration的給藥方式來進行實驗。
研究結果顯示IGF-1注射下,胚胎發育時期神經生長速率較成熟時期神經快,且轉彎角度(turning angle)也較明顯朝向注射方向偏轉。預處理IGF-1接受器的抑制劑Genistein (tyrosine kinase inhibitor)可以阻斷IGF-1所造成神經受到吸引而產生偏轉,顯示IGF-1造成的growth cone turning是透過IGF-1 receptor的活化,引起下游訊息傳遞路徑,最後造成神經偏轉現象。另外針對鈣離子(Calcium)的來源,在Ca2+-free溶液置換和鎘離子(CdCl2)預處理下,結果發現皆影響IGF-1對神經產生的偏轉作用,顯示鈣離子的流入需要透過voltage-activated calcium channels提共。在細胞內儲存池IP3R利用Xec抑制劑預處理,會阻止原本IGF-1對神經產生的偏轉作用。分別預處理PI 3-kinase抑制劑wortmannin和phospholipase Cγ (PLCγ)抑制劑U73122皆會影響IGF-1對神經吸引轉向的作用。此外,IGF-1對神經偏轉作用也會受到TRP channels的抑制劑SKF96365或Gadolinium (Gd3+)的處理而減少,顯示細胞內鈣離子參與其中的訊息調控。綜合以上所述,我們的研究顯示IGF-1吸引神經的偏轉作用是透過PLCγ,IP 3-kinase以及TRP channels的訊息傳遞路徑所調控。
Abstract
The path-finding of developing neurons subject to the guidance of both attractive and repulsive cues emerge in the way to their target. The discoveries of IGF-1 (insulin-like growth factor-1) expression in the developing skeletal muscle increase with the formation of differentiated skeletal muscle fibers and decrease to very low adult levels during the process of synapse elimination. Although evidence suggests that insulin-like growth factor plays an important role in the development and growth of the neuromuscular synapse, the effect of IGF-1 in the guidance on the growth cone of a motoneuron remains unknown. Here we focus on the possibility and underlying molecular mechanisms of IGF-1 in the guidance of a developing neuron by using 4 to 10 hours (embryonic development) and 1-day-old (mature stage) primary cultured motoneurons of Xenopus laevis.
The growth rate of developing axons was increased and the growth cones were significantly attracted toward to the direction of IGF-1 application. Pretreatment of tyrosine kinase inhibitor genistein effectively occluded growth turning response induced by IGF-1. The IGF-1-induced guidance effect was abolished when calcium was eliminated from the culture medium or bath application with the pharmacological calcium channel inhibitor cadmium, indicating that calcium influxes through voltage-activated calcium channels is required. IP3 receptor Xec hampered the IGF-1-induced turning. Treating cells with PI-3 kinase inhibitor wortmannin and with phospholipase Cγ (PLCγ) inhibitor U73122 abolished IGF-1-induced axonal attraction. Moreover, IGF-1-induced turning response is significantly occluded by store depletion-activated calcium channel (TRPC) inhibitors either SKF96369 or Gadolinium, suggesting the involvement of internal calcium store. Overall, results from our studies demonstrate IGF-1 has an attractive effect on axonal guidance and this is done via PLCγ, PI3 kinase and TRPC signaling cascades.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract v
目錄 vii
圖目錄 viii
附圖目錄 x
縮寫表 xi
緒論 1
實驗目的 8
實驗材料 9
實驗方法 12
結果 19
討論 29
參考文獻 35
Figure 1. Experimental design of pressure injection-induced microscopic gradient. 45
Figure 2. Cyclic AMP microscopic gradient successfully induce attractive response on growth cone of Xenopus developing motoneuron. 47
Figure 3. Attractive effect of IGF-1 on Xenopus developing spinal motoneuron. 49
Figure 4. Effect of IGF-1-induced attractive turning response on Xenopus motoneuron at different developmental stages. 51
Figure 5. Role of calcium on IGF-1-induced growth cone turning. 53
Figure 6. Involvement of internal calcium reservoir in IGF-1-induced growth cone turning response. 55
Figure 7. The exocytic membrane effect of IGF-1 microscopic gradient on the growth cone. 56
Figure 8. Role of ryanodine receptor in IGF-1-induced attractive turning response. 58
Figure 9. IP3 receptor is responsible for IGF-1-induced turning response at developing Xenopus motoneuron. 60
Figure 10 . Activation of tyrosine kinase IGF-1 receptor is prerequisite for IGF-1-induced growth cone turning response. 62
Figure 11. PLCγ activity is involvement in IGF-1-induced growth cone turning. 64
Figure 12. Involvement of PI-3 kinase pathway in IGF-1-induced growth cone turning. 66
Figure 13. Role of MAP kinase in growth cone turning response induced by IGF-1. 68
Figure 14. Summary of the effect of pharmacological inhibitors on IGF-1-induced growth cone turning response. 70
Figure 15. TRPC channel is involved in IGF-1-induced growth cone turning response. 72
Figure 16. Effect of TPR channel inhibitor Gd3+ on the growth cone turning response induced by IGF-1. 74
Figure 17. Schematic diagram illustrating in the signaling cascade underlying IGF-1-induced attractive growth cone turning response. 77
Table 1. 75

附圖 1. The structure of the growth cone. 79
附圖 2. Chemorepulsion and chemoattraction. 80
附圖 3. Structure of the insulin receptor and IGF-I receptor. 81
附圖 4. Representation of the expression profiles of IGFs. 82
附圖 5. The system of pharmacy appliction with air pump. 83
附圖 6. Procedures for the preparing Xenopus nerve culture. 84
參考文獻 References
Adams TE, Epa VC, Garrett TPJ, Ward CW (2000) Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci 57:1050-1093.
Anderson MJ, Cohen MW, Zorychta E (1977) Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. The Journal of physiology 268:731-756.
Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347-381.
Berzat A, Hall A (2010) Cellular responses to extracellular guidance cues. Embo J 29:2734-2745.
Blair LAC, Bence-Hanulec KK, Mehta S, Franke T, Kaplan D, Marshall J (1999) Akt-dependent potentiation of L channels by insulin-like growth factor-1 is required for neuronal survival. J Neurosci 19:1940-1951.
Blair LAC, Marshall J (1997) IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron 19:421-429.
Bray D, Hollenbeck PJ (1988) Growth cone motility and guidance. Annual review of cell biology 4:43-61.
Brooker GJF, Kalloniatis M, Russo VC, Murphy M, Werther GA, Bartlett FF (2000) Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J Neurosci Res 59:332-341.
Brose K, Tessier-Lavigne M (2000) Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr Opin Neurobiol 10:95-102.
Buck KB, Zheng JQ (2002) Growth cone turning induced by direct local modification of microtubule dynamics. J Neurosci 22:9358-9367.
Burgo A, Proux-Gillardeaux V, Sotirakis E, Bun P, Casano A, Verraes A, Liem RK, Formstecher E, Coppey-Moisan M, Galli T (2012) A molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery. Dev Cell 23:166-180.
Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D (1998) Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Phys B 121:19-26.
Canty AJ, Murphy M (2008) Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog Neurobiol 85:214-235.
Caroni P (1993) Activity-Sensitive Signaling by Muscle-Derived Insulin-Like Growth-Factors in the Developing and Regenerating Neuromuscular System. Ann Ny Acad Sci 692:209-222.
Chilton JK (2006) Molecular mechanisms of axon guidance. Dev Biol 292:13-24.
Conde C, Caceres A (2009) Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci 10:319-332.
Cotrufo T, Andres RM, Ros O, Perez-Branguli F, Muhaisen A, Fuschini G, Martinez R, Pascual M, Comella JX, Soriano E (2012) Syntaxin 1 is required for DCC/Netrin-1-dependent chemoattraction of migrating neurons from the lower rhombic lip. The European journal of neuroscience 36:3152-3164.
Cotrufo T, Perez-Branguli F, Muhaisen A, Ros O, Andres R, Baeriswyl T, Fuschini G, Tarrago T, Pascual M, Urena J, Blasi J, Giralt E, Stoeckli ET, Soriano E (2011) A signaling mechanism coupling netrin-1/deleted in colorectal cancer chemoattraction to SNARE-mediated exocytosis in axonal growth cones. J Neurosci 31:14463-14480.
D'Mello SR, Borodezt K, Soltoff SP (1997) Insulin-like growth factor and potassium depolarization maintain neuronal survival by distinct pathways: Possible involvement of PI 3-kinase in IGF-1 signaling. J Neurosci 17:1548-1560.
Dent EW, Gertler FB (2003) Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 40:209-227.
Dickson BJ (2002) Molecular mechanisms of axon guidance. Science 298:1959-1964.
Eftimie R, Brenner HR, Buonanno A (1991) Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A 88:1349-1353.
Egea J, Klein R (2007) Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol 17:230-238.
Eichmann A, Le Noble F, Autiero M, Carmeliet P (2005) Guidance of vascular and neural network formation. Curr Opin Neurobiol 15:108-115.
Fischer M, Kaech S, Knutti D, Matus A (1998) Rapid actin-based plasticity in dendritic spines. Neuron 20:847-854.
Foncea R, Andersson M, Ketterman A, Blakesley V, SapagHagar M, Sugden PH, LeRoith D, Lavandero S (1997) Insulin-like growth factor-I rapidly activates multiple signal transduction pathways in cultured rat cardiac myocytes. J Biol Chem 272:19115-19124.
Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665-668.
Fuchs E, Cleveland DW (1998) A structural scaffolding of intermediate filaments in health and disease. Science 279:514-519.
Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58:92-102.
Genc B, Ozdinler PH, Mendoza AE, Erzurumlu RS (2004) A chemoattractant role for NT-3 in proprioceptive axon guidance. PLoS biology 2:e403.
Gluckman P, Klempt N, Guan J, Mallard C, Sirimanne E, Dragunow M, Klempt M, Singh K, Williams C, Nikolics K (1992) A Role for Igf-1 in the Rescue of Cns Neurons Following Hypoxic-Ischemic Injury. Biochem Bioph Res Co 182:593-599.
Gonzalez-Billault C, Jimenez-Mateos EM, Caceres A, Diaz-Nido J, Wandosell F, Avila J (2004) Microtubule-associated protein 1B function during normal development, regeneration, and pathological conditions in the nervous system. J Neurobiol 58:48-59.
Goodman CS (1996) Mechanisms and molecules that control growth cone guidance. Annu Rev Neurosci 19:341-377.
Guan KL, Rao Y (2003) Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev Neurosci 4:941-956.
Gundersen RW, Barrett JN (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor. The Journal of cell biology 87:546-554.
Hale LJ, Coward RJ (2013) Insulin signalling to the kidney in health and disease. Clinical science 124:351-370.
Han L, Wen Z, Lynn RC, Baudet ML, Holt CE, Sasaki Y, Bassell GJ, Zheng JQ (2011) Regulation of chemotropic guidance of nerve growth cones by microRNA. Molecular brain 4:40.
Hansson HA, Dahlin LB, Danielsen N, Fryklund L, Nachemson AK, Polleryd P, Rozell B, Skottner A, Stemme S, Lundborg G (1986) Evidence Indicating Trophic Importance of Igf-I in Regenerating Peripheral-Nerves. Acta Physiol Scand 126:609-614.
Hilgemann DW (2007) Local PIP(2) signals: when, where, and how? Pflugers Archiv : European journal of physiology 455:55-67.
Hong F, Moon KA, Kim SS, Kim YS, Choi YK, Bae YS, Suh PG, Ryu SH, Choi EJ, Ha J, Kim SS (2001) Role of phospholipase C-gamma 1 in insulin-like growth factor I-induced muscle differentiation of H9c2 cardiac myoblasts. Biochem Bioph Res Co 282:816-822.
Huat TJ, Khan AA, Pati S, Mustafa Z, Abdullah JM, Jaafar H (2014) IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. Bmc Neurosci 15.
Hutchins BI, Li L, Kalil K (2012) Wnt-induced calcium signaling mediates axon growth and guidance in the developing corpus callosum. Science signaling 5:pt1.
Ishii DN (1989) Relationship of Insulin-Like Growth Factor-Ii Gene-Expression in Muscle to Synaptogenesis. P Natl Acad Sci USA 86:2898-2902.
Itofusa R, Kamiguchi H (2011) Polarizing membrane dynamics and adhesion for growth cone navigation. Molecular and cellular neurosciences 48:332-338.
Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6:671-682.
Jin M, Guan CB, Jiang YA, Chen G, Zhao CT, Cui K, Song YQ, Wu CP, Poo MM, Yuan XB (2005) Ca2+-dependent regulation of rho GTPases triggers turning of nerve growth cones. J Neurosci 25:2338-2347.
Joanne Wang C, Li X, Lin B, Shim S, Ming GL, Levchenko A (2008) A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues. Lab on a chip 8:227-237.
Kim B, Leventhal PS, Saltiel AR, Feldman EL (1997) Insulin-like growth factor-I-mediated neurite outgrowth in vitro requires mitogen-activated protein kinase activation. J Biol Chem 272:21268-21273.
Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S (1998) Functional interaction between InsP(3) receptors and store-operated Htrp3 channels. Nature 396:478-482.
Koch C, Zador A (1993) The function of dendritic spines: devices subserving biochemical rather than electrical compartmentalization. J Neurosci 13:413-422.
Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117-1134.
Leski ML, Valentine SL, Baer JD, Coyle JT (2000) Insulin-like growth factor I prevents the development of sensitivity to kainate neurotoxicity in cerebellar granule cells. Journal of neurochemistry 75:1548-1556.
Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894-898.
Liou JC, Tsai FZ, Ho SY (2003) Potentiation of quantal secretion by insulin-like growth factor-1 at developing motoneurons in Xenopus cell culture. J Physiol-London 553:719-728.
Lockerbie RO (1987) The neuronal growth cone: a review of its locomotory, navigational and target recognition capabilities. Neuroscience 20:719-729.
Lohof AM, Quillan M, Dan Y, Poo MM (1992) Asymmetric modulation of cytosolic cAMP activity induces growth cone turning. J Neurosci 12:1253-1261.
Lowery LA, Van Vactor D (2009) The trip of the tip: understanding the growth cone machinery. Nature reviews Molecular cell biology 10:332-343.
Majewska A, Brown E, Ross J, Yuste R (2000) Mechanisms of calcium decay kinetics in hippocampal spines: Role of spine calcium pumps and calcium diffusion through the spine neck in biochemical compartmentalization. J Neurosci 20:1722-1734.
Markus A, Zhong J, Snider WD (2002) Raf and akt mediate distinct aspects of sensory axon growth. Neuron 35:65-76.
Marsick BM, Flynn KC, Santiago-Medina M, Bamburg JR, Letourneau PC (2010) Activation of ADF/cofilin mediates attractive growth cone turning toward nerve growth factor and netrin-1. Developmental neurobiology 70:565-588.
Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Cell Bio 9:446-454.
Mehrhof FB, Muller FU, Bergmann MW, Li P, Wang Y, Schmitz W, Dietz R, von Harsdorf R (2001) In cardiomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent and mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 104:2088-2094.
Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R (1999) Ion channels in presynaptic nerve terminals and control of transmitter release. Physiological reviews 79:1019-1088.
Merianda TT, Lin AC, Lam JS, Vuppalanchi D, Willis DE, Karin N, Holt CE, Twiss JL (2009) A functional equivalent of endoplasmic reticulum and Golgi in axons for secretion of locally synthesized proteins. Molecular and cellular neurosciences 40:128-142.
Meriane M, Tcherkezian J, Webber CA, Danek EI, Triki I, McFarlane S, Bloch-Gallego E, Lamarche-Vane N (2004) Phosphorylation of DCC by Fyn mediates Netrin-1 signaling in growth cone guidance. The Journal of cell biology 167:687-698.
Miesenbock G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192-195.
Naeve GS, Vana AM, Eggold JR, Verge G, Ling N, Foster AC (2000) Expression of rat insulin-like growth factor binding protein-6 in the brain, spinal cord, and sensory ganglia. Brain research Molecular brain research 75:185-197.
Nakazawa H, Sada T, Toriyama M, Tago K, Sugiura T, Fukuda M, Inagaki N (2012) Rab33a Mediates Anterograde Vesicular Transport for Membrane Exocytosis and Axon Outgrowth. J Neurosci 32:12712-12725.
Nieto-Estevez V, Defterali C, Vicario-Abejon C (2016) IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain. Frontiers in neuroscience 10:52.
Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin); a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. Amsterdam,: North-Holland Pub. Co.
Oertner TG, Matus A (2005) Calcium regulation of actin dynamics in dendritic spines. Cell Calcium 37:477-482.
Ozdinler PH, Macklis JD (2006) IGF-I specifically enhances axon outgrowth of corticospinal motor neurons. Nat Neurosci 9:1371-1381.
Parekh AB, Putney JW, Jr. (2005) Store-operated calcium channels. Physiological reviews 85:757-810.
Polleux F, Snider W (2010) Initiating and Growing an Axon. Cold Spring Harbor perspectives in biology 2.
Pu SF, Zhuang HX, Marsh DJ, Ishii DN (1999) Time-dependent alteration of insulin-like growth factor gene expression during nerve regeneration in regions of muscle enriched with neuromuscular junctions. Mol Brain Res 63:207-216.
Rabinovsky ED, Gelir E, Gelir S, Lui H, Kattash M, DeMayo FJ, Shenaq SM, Schwartz RJ (2002) Targeted expression of IGF-1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. Faseb J 16:53-+.
Richards DA, De Paola V, Caroni P, Gahwiler BH, McKinney RA (2004) AMPA-receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus. The Journal of physiology 558:503-512.
Rinderknecht E, Humbel RE (1976) Polypeptides with Nonsuppressible Insulin-Like and Cell-Growth Promoting Activities in Human-Serum - Isolation, Chemical Characterization, and Some Biological Properties of Forms 1 and 2. P Natl Acad Sci USA 73:2365-2369.
Rohm B, Ottemeyer A, Lohrum M, Puschel AW (2000) Plexin/neuropilin complexes mediate repulsion by the axonal guidance signal semaphorin 3A. Mech Develop 93:95-104.
Ros O, Cotrufo T, Martinez-Marmol R, Soriano E (2015) Regulation of Patterned Dynamics of Local Exocytosis in Growth Cones by Netrin-1. J Neurosci 35:5156-5170.
Sanes JR, Lichtman JW (1999) Development of the vertebrate neuromuscular junction. Annu Rev Neurosci 22:389-442.
Sasaoka T, Ishiki M, Wada T, Hori H, Hirai H, Haruta T, Ishihara H, Kobayashi M (2001) Tyrosine phosphorylation-dependent and -independent role of Shc in the regulation of IGF-1-induced mitogenesis and glycogen synthesis. Endocrinology 142:5226-5235.
Schaefer AW, Schoonderwoert VTG, Ji L, Mederios N, Danuser G, Forscher P (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 15:146-162.
Scolnick JA, Cui K, Duggan CD, Xuan S, Yuan XB, Efstratiadis A, Ngai J (2008) Role of IGF signaling in olfactory sensory map formation and axon guidance. Neuron 57:847-857.
Song H, Ming G, He Z, Lehmann M, McKerracher L, Tessier-Lavigne M, Poo M (1998) Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281:1515-1518.
Song HJ, Poo MM (2001) The cell biology of neuronal navigation. Nat Cell Biol 3:E81-E88.
Sosa L, Dupraz S, Laurino L, Bollati F, Bisbal M, Caceres A, Pfenninger KH, Quiroga S (2006) IGF-1 receptor is essential for the establishment of hippocampal neuronal polarity. Nat Neurosci 9:993-995.
Sperber BR, Leight S, Goedert M, Lee VM (1995) Glycogen synthase kinase-3 beta phosphorylates tau protein at multiple sites in intact cells. Neuroscience letters 197:149-153.
Spitzer NC, Lamborghini JE (1976) The development of the action potential mechanism of amphibian neurons isolated in culture. Proc Natl Acad Sci U S A 73:1641-1645.
Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272:716-719.
Tabti N, Poo M-M (1991) Culturing spinal neurons and muscle cells from Xenopus embryos. In: Cellular and molecular neuroscience series (G, B. and K, G., eds) Cambridge, Mass.: MIT Press.
TessierLavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123-1133.
Tojima T, Akiyama H, Itofusa R, Li Y, Katayama H, Miyawaki A, Kamiguchi H (2007) Attractive axon guidance involves asymmetric membrane transport and exocytosis in the growth cone. Nat Neurosci 10:58-66.
Tojima T, Hines JH, Henley JR, Kamiguchi H (2011) Second messengers and membrane trafficking direct and organize growth cone steering. Nat Rev Neurosci 12:191-203.
Tojima T, Itofusa R, Kamiguchi H (2014) Steering neuronal growth cones by shifting the imbalance between exocytosis and endocytosis. J Neurosci 34:7165-7178.
Tojima T, Kamiguchi H (2015) Exocytic and endocytic membrane trafficking in axon development. Development, growth & differentiation 57:291-304.
Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP (1988) Multiple types of neuronal calcium channels and their selective modulation. Trends in Neurosciences 11:431-438.
Van Obberghen E, Baron V, Delahaye L, Emanuelli B, Filippa N, Giorgetti-Peraldi S, Lebrun P, Mothe-Satney I, Peraldi P, Rocchi S, Sawka-Verhelle D, Tartare-Deckert S, Giudicelli J (2001) Surfing the insulin signaling web. Eur J Clin Invest 31:966-977.
Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387-417.
Vitriol EA, Zheng JQ (2012) Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 73:1068-1081.
Weinl C, Drescher U, Lang S, Bonhoeffer F, Loschinger J (2003) On the turning of Xenopus retinal axons induced by ephrin-A5. Development 130:1635-1643.
Wen Z, Guirland C, Ming GL, Zheng JQ (2004) A CaMKII/calcineurin switch controls the direction of Ca(2+)-dependent growth cone guidance. Neuron 43:835-846.
Werther GA, Abate M, Hogg A, Cheesman H, Oldfield B, Hards D, Hudson P, Power B, Freed K, Herington AC (1990) Localization of insulin-like growth factor-I mRNA in rat brain by in situ hybridization--relationship to IGF-I receptors. Molecular endocrinology 4:773-778.
Winberg ML, Noordermeer JN, Tamagnone L, Comoglio PM, Spriggs MK, Tessier-Lavigne M, Goodman CS (1998) Plexin A is a neuronal semaphorin receptor that controls axon guidance. Cell 95:903-916.
Xu XM, Guenard V, Kleitman N, Aebischer P, Bunge MB (1995) A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Experimental neurology 134:261-272.
You H, Zheng HW, Murray SA, Yu Q, Uchida T, Fan DM, Xiao ZXJ (2002) IGF-1 induces Pin1 expression in promoting cell cycle S-phase entry. J Cell Biochem 84:211-216.
Yu TW, Bargmann CI (2001) Dynamic regulation of axon guidance. Nat Neurosci 4 Suppl:1169-1176.
Yuan JP, Kiselyov K, Shin DM, Chen J, Shcheynikov N, Kang SH, Dehoff MH, Schwarz MK, Seeburg PH, Muallem S, Worley PF (2003) Homer binds TRPC family channels and is required for gating of TRPC1 by IP3 receptors. Cell 114:777-789.
Zhang FJ, Wang LH, Liu Z, Xing ZY, Wang HJ, Li ZZ (2010) Insulin-like growth factor-1 modulates Ca2+ homeostasis and apoptosis of cultured dorsal root ganglion neurons with excitotoxicity induced by glutamate. Pharmazie 65:5-8.
Zheng JQ, Felder M, Connor JA, Poo MM (1994) Turning of Nerve Growth Cones Induced by Neurotransmitters. Nature 368:140-144.
Zheng JQ, Wan JJ, Poo MM (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci 16:1140-1149.
Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42:897-912.
Zylbersztejn K, Petkovic M, Burgo A, Deck M, Garel S, Marcos S, Bloch-Gallego E, Nothias F, Serini G, Bagnard D, Binz T, Galli T (2012) The vesicular SNARE Synaptobrevin is required for Semaphorin 3A axonal repulsion. The Journal of cell biology 196:37-46.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code