Responsive image
博碩士論文 etd-0626116-104951 詳細資訊
Title page for etd-0626116-104951
論文名稱
Title
甲酸二茂鐵為前驅物以水熱合成磷酸鋰鐵
Hydrothermal synthesis of lithium iron phosphate using ferrocenecarboxylic acid as iron source
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-18
繳交日期
Date of Submission
2016-08-04
關鍵字
Keywords
鋰離子電池、水熱法、陰極材料、甲酸二茂鐵、磷酸鋰鐵
Lithium iron phosphate, Ferrocenecatboxylic acid, Cathode material, Hydrothermal, Li-ion battery
統計
Statistics
本論文已被瀏覽 5686 次,被下載 38
The thesis/dissertation has been browsed 5686 times, has been downloaded 38 times.
中文摘要
本論文是開發一簡單和容易的水熱合成法合成磷酸鋰鐵,我們成功地利用甲酸二茂鐵作為鐵源,在大氣環境且無添加還原劑的條件下成功地合成磷酸鋰鐵。利用X-光繞射技術確認產物為磷酸鋰鐵,具橄欖石晶系結構。掃描式電子顯微鏡的結果顯示磷酸鋰鐵具有明顯的結晶型態,晶體大小約1微米。另外,以穿透式電子顯微鏡來觀察磷酸鋰鐵粉體的表面形貌、大小及晶格方向。以元素分析分析鍛燒後磷酸鋰鐵的C、N、O比例。進一步地,將此磷酸鋰鐵陰極材料製成複合電極,研究其電化學和電池特性。在循環伏安法的結果顯示,以此法合成的磷酸鋰鐵材料於3.5 V vs. Li/Li+有氧化還原對,且具有良好的電化學的氧化還原可逆性。在鋰電池性能方面,以交流阻抗測試測量此磷酸鋰鐵電池阻抗大小及鋰離子傳導速率。此磷酸鋰鐵陰極以0.1C 定電流充放電的電容量可達159 mAh/g,非常接近其理論電容量。同時,此磷酸鋰鐵電池也有良好的循環壽命表現。
Abstract
This thesis is to develop a simple and facile approach for hydrothermal synthesis of LiFePO4. Without reducing agent, we have successfully synthesized LiFePO4 using ferrocenecarboxylic acid as an iron source in the air atmosphere. The X-ray diffraction (XRD) pattern results demonstrate that LiFePO4 powders have an orthorhombic olivine-type structure with a space group of Pnma. The observation of scanning electron microscopy (SEM) shows that resulting LiFePO4 particle with a size of 1 μm. The surface morphology, size, and crystal orientation of the LiFePO4 powders were also confirmed by transmission electron microscopy (TEM). The chemical composition of the LiFePO4 powders was characterized by elemental analysis (EA). Furthermore, the LiFePO4 cathode-active materials was fabricated as LiFePO4 composite electrodes to measure their electrochemical properties and cell performances. The results of cyclic voltammetry (CV) shows a redox couple at 3.5 V vs. Li/Li+ with excellent electrochemical reversibility. The impedance and lithium diffusion of the Li|| LiFePO4 cell were measured by AC-impedance. The discharge capacity of the cell is 159 mAh/g at a discharge rate of 0.1C, which is very close the theoretical energy capacity LiFePO4 (170 mAh/g). The cell also exhibits good cycle-life performance.
目次 Table of Contents
論文審定書 .................................................................................................................................... i
論文公開授權書 ........................................................................................................................... ii
誌謝 .............................................................................................................................................. iii
中文摘要 ...................................................................................................................................... iv
Abstract ......................................................................................................................................... v
圖目錄 ........................................................................................................................................... x
表目錄 ......................................................................................................................................... xv
第一章. 緒論 ................................................................................................................................ 1
1-1. 前言 ...................................................................................................................... 2
1-2. 研究動機 .............................................................................................................. 3
第二章. 文獻回顧 ........................................................................................................................ 4
2-1. 一次電池與二次電池發展 .................................................................................. 5
2-2. 鋰離子電池工作原理介紹 .................................................................................. 6
2-3. 鋰離子電池陰極材料 .......................................................................................... 7
2-3.1. 鈷酸鋰 ( LiCoO2 ) ......................................................................................... 7
2-3.2. 鎳酸鋰 (LiNiO2) ........................................................................................... 8
2-3.3. 錳酸鋰 (LiMnO2) ......................................................................................... 8
2-3.4. 磷酸鋰鐵 (LiFePO4) ..................................................................................... 8
2-4. 磷酸鋰鐵合成方法 .............................................................................................. 9
2-4.1. 固態反應法 ................................................................................................... 9
2-4.2. 機械活化法 ................................................................................................... 9
2-4.3. 碳熱還原法 ................................................................................................... 9
2-4.4. 微波法 ......................................................................................................... 10
2-4.5. 凝膠法 ......................................................................................................... 10
vii
2-4.6. 水熱法 ......................................................................................................... 10
第三章. 實驗方法 ...................................................................................................................... 12
3-1. 實驗藥品與器材 ................................................................................................ 13
3-2. 實驗步驟 ............................................................................................................ 15
3-2.1. 不同鐵源前驅物水熱法合成 ..................................................................... 15
3-2.2. 磷酸三銨不同水熱反應時間調整 ............................................................. 15
3-2.3. 磷酸二銨不同水熱反應時間調整 ............................................................. 16
3-2.4. 磷酸二銨不同水熱反應溫度調整 ............................................................. 16
3-2.5. 高溫管狀爐鍍碳鍛燒 ................................................................................. 17
3-2.6. 半電池組裝 ................................................................................................. 18
3-3. 粉體分析鑑定儀器介紹 .................................................................................... 19
3-3.1. X光繞射儀 (X-ray Diffractometer, XRD) ................................................. 19
3-3.2. 場發式掃描式電子顯微鏡 (Field-emission scanning electron microscope, SEM) ....................................................................................................................... 19
3-3.3. 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) .............. 20
3-3.4. 化學分析電子能譜儀 (Electron spectroscopy for chemical analysis, ESCA) ..................................................................................................................... 20
3-3.5. 元素分析儀 (Element Analysis, EA) ......................................................... 20 3-3.6. 傅立葉轉換紅外光光譜 (Fourier transform infrared spectroscopy, FT-IR) ................................................................................................................................. 20
3-3.7. 電子順磁共振儀 (Electron paramagnetic resonance spectrometer, EPR) . 21
3-4. 電化學測試儀器介紹 ........................................................................................ 21 3-4.1. 循環伏安法測試 (Cyclic voltammetry, CV) ............................................. 21
viii
3-4.2. 交流阻抗測試 (AC-impedance) ................................................................. 21
3-4.3. 充放電及倍率效能測試 (Charge-discharge & C-rate performance) ........ 22
第四章. 結果與討論 .................................................................................................................. 23
4-1. 不同鐵源前驅物合成比較 ................................................................................ 24
4-1.1. X光繞射分析 ............................................................................................... 24
4-1.2. 表面元素分析儀 (ESCA) ........................................................................... 25
4-2. 磷酸三銨不同水熱反應時間 ............................................................................ 26
4-2.1. X光繞射分析 ............................................................................................... 26
4-2.2. 掃描式電子顯微鏡(SEM) ........................................................................... 27
4-2.3. 穿透式電子顯微鏡 (TEM) ........................................................................ 29
4-2.4. 元素分析(EA) ............................................................................................. 32
4-2.5. 循環伏安法 (CV) ....................................................................................... 32
4-2.6. 充放電測試 (Charge & discharge test) ...................................................... 34
4-3. 磷酸二銨不同水熱反應溫度 ............................................................................ 35
4-3.1. X光繞射分析 ............................................................................................... 35
4-3.2. 掃描式電子顯微鏡 (SEM) ......................................................................... 36
4-3.3. 紅外光光譜 (FT-IR) ................................................................................... 37
4-4. 磷酸二銨不同水熱反應時間 ............................................................................ 39
4-4.1. X光繞射分析 (XRD) ................................................................................. 39
4-4.2. 掃描式電子顯微鏡 (SEM) ......................................................................... 40
4-4.3. 穿透式電子顯微鏡 (TEM) ........................................................................ 42
4-4.4. 元素分析儀 (EA) ....................................................................................... 45
ix
4-4.5. 傅立葉紅外光譜 (FT-IR) ........................................................................... 45
4-4.6. 電子順磁共振光譜儀 (EPR) ..................................................................... 47
4-4.7. 循環伏安法 (CV) ....................................................................................... 48
4-4.8. 交流阻抗測試 (AC-impendence) ............................................................... 49
4-4.9. 充放電測試 (Charge & discharge test) ...................................................... 51
4-4.10. C-rate充放電測試 (C-rate test) ................................................................ 52
4-4.11. 循環壽命 (Cyclic life) .............................................................................. 55
第五章. 結論 .............................................................................................................................. 57
參考資料 ..................................................................................................................................... 59
參考文獻 References
[1] J. B. Goodenough, K.-S. Park, Journal of the American Chemical Society 2013, 135, 1167-1176.
[2] T. V. S. L. Satyavani, A. Srinivas Kumar, P. S. V. Subba Rao, Engineering Science and Technology, an International Journal 2016, 19, 178-188.
[3] B. Jin, H.-B. Gu, Solid State Ionics 2008, 178, 1907-1914.
[4] Y.-P. Liang, C.-C. Li, W.-J. Chen, J.-T. Lee, Electrochimica Acta 2013, 87, 763-769.
[5] M. M. Thackeray, C. Wolverton, E. D. Isaacs, Energy & Environmental Science 2012, 5, 7854-7863.
[6] J. M. Tarascon, M. Armand, Nature 2001, 414, 359-367.
[7] M. S. WHITTINGHAM, Science 1976, 192, 1126-1127.
[8] B. M. L. Rao, R. W. Francis, H. A. Christopher, Journal of The Electrochemical Society 1977, 124, 1490-1492.
[9] D. B. Le, S. Passerini, J. Guo, J. Ressler, B. B. Owens, W. H. Smyrl, Journal of The Electrochemical Society 1996, 143, 2099-2104.
[10] M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough, Materials Research Bulletin 1983, 18, 461-472.
[11] K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Materials Research Bulletin 1980, 15, 783-789.
[12] O. Toprakci, H. A. K. Toprakci, L. Ji, X. Zhang, KONA Powder and Particle Journal 2010, 28, 50-73.
[13] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy & Environmental Science 2011, 4, 3243-3262.
[14] A. Du Pasquier, I. Plitz, S. Menocal, G. Amatucci, Journal of Power Sources 2003, 115, 171-178.
[15] J. R. Dahn, E. W. Fuller, M. Obrovac, U. von Sacken, Solid State Ionics 1994, 69, 265-270.
[16] J. N. Reimers, J. R. Dahn, Journal of The Electrochemical Society 1992, 139, 2091-2097.
[17] N. Nitta, F. Wu, J. T. Lee, G. Yushin, Materials Today 2015, 18, 252-264.
[18] A. Rougier, P. Gravereau, C. Delmas, Journal of The Electrochemical Society 1996, 143, 1168-1175.
[19] H. Arai, S. Okada, Y. Sakurai, J.-i. Yamaki, Solid State Ionics 1998, 109, 295-302.
[20] A. R. Armstrong, P. G. Bruce, Nature 1996, 381, 499-500.
[21] M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J.-G. Zhang, N. D. Browning, J. Liu, C. Wang, ACS Nano 2013, 7, 760-767.
[22] M. Wohlfahrt-Mehrens, C. Vogler, J. Garche, Journal of Power Sources 2004, 127, 58-64.
[23] S. R. Gowda, K. G. Gallagher, J. R. Croy, M. Bettge, M. M. Thackeray, M. Balasubramanian, Physical Chemistry Chemical Physics 2014, 16, 6898-6902.
[24] H. Zheng, Q. Sun, G. Liu, X. Song, V. S. Battaglia, Journal of Power Sources 2012, 207, 134-140.
[25] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Journal of The Electrochemical Society 1997, 144, 1188-1194.
[26] M. Armand, M. Gauthier, J.-F. Magnan, N. Ravet, in Google Patents, US, 2004.
[27] C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Electrochemical and Solid-State Letters 2006, 9, A352-A355.
[28] S. Franger, F. Le Cras, C. Bourbon, H. Rouault, Journal of Power Sources 2003, 119–121, 252-257.
[29] J. Barker, M. Y. Saidi, J. L. Swoyer Electrochemical and Solid-State Letters 2003, 6, A53-A55.
[30] K. S. Park, J. T. Son, H. T. Chung, S. J. Kim, C. H. Lee, H. G. Kim, Electrochemistry Communications 2003, 5, 839-842.
[31] M. Higuchi, K. Katayama, Y. Azuma, M. Yukawa, M. Suhara, Journal of Power Sources 2003, 119–121, 258-261.
[32] L. Wang, Y. Huang, R. Jiang, D. Jia, Electrochimica Acta 2007, 52, 6778-6783.
[33] R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. Jamnik, Journal of The Electrochemical Society 2005, 152, A858-A863.
[34] L. L. Hench, J. K. West, Chemical Reviews 1990, 90, 33-72.
[35] D. Arumugam, G. Paruthimal Kalaignan, P. Manisankar, Journal of Solid State Electrochemistry 2009, 13, 301-307.
[36] S. Yang, P. Y. Zavalij, M. Stanley Whittingham, Electrochemistry Communications 2001, 3, 505-508.
[37] S. Yang, Y. Song, P. Y. Zavalij, M. Stanley Whittingham, Electrochemistry Communications 2002, 4, 239-244.
[38] J. Chen, M. S. Whittingham, Electrochemistry Communications 2006, 8, 855-858.
[39] D. Y. W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, S. Fujitani, Journal of The Electrochemical Society 2007, 154, A253-A257.
[40] L. Chen, Y. Song, P. Hu, C. P. Deming, Y. Guo, S. Chen, Physical Chemistry Chemical Physics 2014, 16, 18736-18742.
[41] G. Qin, S. Xue, Q. Ma, C. Wang, CrystEngComm 2014, 16, 260-269.
[42] S. Yang, M. Hu, L. Xi, R. Ma, Y. Dong, C. Y. Chung, ACS applied materials & interfaces 2013, 5, 8961-8967.
[43] F. Gao, Z. Tang, Electrochimica Acta 2008, 53, 5071-5075.
[44] V. Palomares, A. Goñi, I. G. d. Muro, L. Lezama, I. d. Meatza, M. Bengoechea, I. Boyano, T. Rojo, Journal of The Electrochemical Society 2011, 158, A1042-A1047.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code