Responsive image
博碩士論文 etd-0626116-170118 詳細資訊
Title page for etd-0626116-170118
論文名稱
Title
三五族單晶片積體化光纖陀螺儀
III-V Photonic Integrated Circuit for Fiber Optic Gyroscope
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-06-23
繳交日期
Date of Submission
2016-08-01
關鍵字
Keywords
極化分歧器、桑克反射器、半導體光放大器、干涉式光纖陀螺儀、寬頻光源
semiconductor optical amplifiers, Sagnac reflector, broadband light source, interferometric fiber optic gyroscope, polarization splitter
統計
Statistics
本論文已被瀏覽 5688 次,被下載 58
The thesis/dissertation has been browsed 5688 times, has been downloaded 58 times.
中文摘要
本研究之目標為利用Smart Photonics 晶圓廠所提供的InGaAsP-InP 光電積體
電路平台來整合干涉式光纖陀螺儀中除了光纖線圈以外的所有元件於單一晶片
上,以降低整體系統的尺寸與成本,降低系統的功率消耗,提升對於熱效應與穩
定度的控制。我們以晶圓廠之標準元件做為研究基礎,對光纖陀螺儀系統做損耗、
光極化控制、介面反射、元件封裝等設計與評估。其中,光極化的控制,對於光
纖陀螺儀的系統特性,具有非常大的影響力。因此,我們分別就寬頻譜光源與極
化分歧器,做了深入的研究與探討。在寬頻光源的設計中,我們以串聯構型為基
礎,對多模干涉反射器與桑克反射器做模擬與分析。串聯2 顆半導體光放大器結
合桑克反射器,為最佳的設計構型。在電流注入120 mA 時,其TE 極化的頻寬為
18.45 nm,TE 極化光功率為22.56 mW,並且擁有15.83 dB 的TE/TM 極化分歧比。
極化分歧器的構型為長直波導構型,其最佳參數設計搭配SOA 光源在誤差+/-30
nm 下,可維持17 dB 以上的極化分歧;在誤差+10/-30 nm 下,則可達到20 dB 以
上的極化分歧;在無誤差的狀態下可達到24.26 dB,對於光源提升了8.43 dB 的極
化分歧。除此之外,為了避免光纖陀螺儀的特性與信號分析,受到反射影響,我
們對光纖陀螺儀晶片設計上的各個元件的介面做了低反射的最佳化設計與模擬。
在未來研究上,我們將在三五族平台上整合我們所設計的寬頻光源SOA、極化分
歧器,以及晶圓廠所提供的的低反射1×2 MMI 分光器、相位調變器、光場轉換器、
檢光器和抗反射鍍膜,完成光纖陀螺儀晶片的收發端積體化系統與相關測試元件
之晶片布局。
Abstract
In addition to optical fiber coils, this work aims to integrate all the other photonic
components monolithically on single chip to realize an interferometric fiber optic
gyroscope (FOG). The advantages of utilizing photonic integration to realize a FOG
chip include reduced size and cost of overall system, reduced power consumption, and
improved thermal stability. This FOG photonic integrated circuit (PIC) is designed
based on Smart Photonics InP/InGaAsP generic integration platform, which provides
numerous building blocks for passive and active photonic devices as well as their
integration strategies and packaging solutions. The performance of a FOG system is
strongly affected by the purity of light polarization. A high-power superluminescent
diode usually serves as the light source of a FOG system. However, the building block
for a superluminescent diode or a polarization splitter is not provided. Therefore, in this
work we focus on the design of a broadband light source using cascaded semiconductor
optical amplifiers (SOAs) with a Sagnac reflector. With this integrated light source
design, a TE-polarized broadband light source with an output power of 22.56 mW, a
bandwidth of 18.45 nm, and a TE/TM polarization extinction ratio of 15.83 dB can be
realized. The design of a polarization splitter is based on straight waveguide
configuration to further enhance the TE/TM polarization extinction ratio up to 24.26 dB,
leading to an 8.43 dB overall improvement in TE/TM polarization extinction ratio. All
interface reflection in the proposed FOG is eliminated by careful designs.
目次 Table of Contents
中文論文審定書 ............................................................................................................... i
英文論文審定書 .............................................................................................................. ii
致謝 ................................................................................................................................. iii
中文摘要 ......................................................................................................................... iv
Abstract ........................................................................................................................... v
目錄 ................................................................................................................................. vi
圖次 ............................................................................................................................... viii
表次 ................................................................................................................................ xii
第一章緒論 .................................................................................................................. 1
1-1 研究背景與目的 ............................................................................................. 1
1-2 技術發展與瓶頸 ............................................................................................. 6
1-3 積體化平台 ..................................................................................................... 8
1.4 現有關鍵技術/能力分析 ................................................................................ 9
1.5 論文架構 ....................................................................................................... 12
第二章單晶片積體化光纖陀螺儀 ............................................................................ 13
2-1 目標元件架構與預期規格 ........................................................................... 13
2-2 低損耗系統設計 ........................................................................................... 16
2-3 光極化維持與整體光損耗之評估與解決方案 ........................................... 17
2-4 寬頻譜光源之評估與解決方案 ................................................................... 20
2-5 介面反射之評估與解決方案 ....................................................................... 22
2-6 元件封裝架構 ............................................................................................... 23
第三章寬頻譜光源之設計與模擬 ............................................................................ 25
3-1 SOA 波導結構與模型建立 .......................................................................... 25
3-2 SOA 多重量子井 .......................................................................................... 27
vii
3-3 SOA 串聯分析 .............................................................................................. 29
3-4 SOA + MIR 構型分析 .................................................................................. 31
3-5 SOA + SR 構型分析 ..................................................................................... 34
3-6 光源設計總結 ............................................................................................... 37
第四章極化分歧器之設計 ........................................................................................ 38
4-1 極化分歧器模型之建構 ............................................................................... 38
4-2 極化分歧器之設計原理 ............................................................................... 39
4-3 極化分歧器之穿透分析 ............................................................................... 40
4-4 極化分歧器之容忍度分析 ........................................................................... 41
4-5 極化分歧器與光源之極化特性 ................................................................... 45
第五章晶片介面反射之模擬 .................................................................................... 47
5-1 光纖陀螺儀系統之介面反射 ....................................................................... 47
5-2 主被動區介面反射和電性隔絕介面反射 ................................................... 47
5-3 1×2 MMI 分光器的介面反射 ...................................................................... 51
5-4 極化分歧器的介面反射 ............................................................................... 55
5-4 晶片端面的介面反射 ................................................................................... 56
5-5 深淺轉換器的介面反射 ............................................................................... 57
第六章結論與未來研究 ............................................................................................ 60
6-1 研究結論 ....................................................................................................... 60
6-2 未來研究 - 晶片布局 ................................................................................. 60
6-3 未來研究 - 測試元件 ................................................................................. 64
參考文獻 ........................................................................................................................ 66
參考文獻 References
[1] W. M. Macek, and D. T. M. Davis, “Rotation Rate Sensing with Traveling-Wave
Ring Lasers,” Applied Physics Letters, vol. 2, no. 3, pp. 67-68, 1963.
[2] A. Mignot, G. Feugnet, S. Schwartz, I. Sagnes, A. Garnache, C. Fabre, and J. P.
Pocholle, “Single-frequency external-cavity semiconductor ring-laser
gyroscope,” Optics Letters, vol. 34, no. 1, pp. 97-99, Jan 1, 2009.
[3] R. B. Brown, NRL Memorandum Report 1871, Naval Research Laboratory,
Washington, DC, 1968.
[4] F. Dell'Olio, T. Tatoli, C. Ciminelli, and M. N. Armenise, “Recent advances in
miniaturized optical gyroscopes,” Journal of the European Optical
Society-Rapid Publications, vol. 9, 2014.
[5] C. C. M. N. Armenise, F. Dell’Olio, V. M. N. Passaro, Advances in Gyroscope
Technologies, Chapter 2: Springer, 2010.
[6] L.-J. Z. L. Wang, W.-X. Chen, J.-Q. Pan, F. Zhou, H.-L. Zhu, and W. Wang,
“Superluminescent diode monolithically integrated with novel Y-branch by
bundle integrated waveguide for fiber optic gyroscope,” in Proc. SPIE, 2007, pp.
68380D.
[7] S. Srinivasan, R. Moreira, D. Blumenthal, and J. E. Bowers, “Design of
integrated hybrid silicon waveguide optical gyroscope,” Optics Express, vol. 22,
no. 21, pp. 24988-24993, Oct 20, 2014.
[8] R. Regener, “Fiber-optic gyroscope integrated on a silicon substrate,” US patent
5194917, Mar 16, 1993.
[9] 江. 郝寅雷, 楊建義, 王明華, 李錫華, 周強, 唐奕, 「一種光陀螺用LiNbO3
電光相位調制器」, CN 1847929 A, Oct 18, 2006.
[10] 張. 趙玲娟, 朱洪亮, 王圩, 週帆, 王寶軍, 邊靜, 王魯峰, 「光纖陀螺用單
片集成波導型光收發芯片及其製作方法」, CN 1601226 A, Mar 30, 2005.
[11] C. R. Doerr, “Integrated Photonic Platforms for Telecommunications: InP and
Si,” Ieice Transactions on Electronics, vol. E96c, no. 7, pp. 950-957, Jul, 2013.
[12] http://www.jeppix.eu/.
[13] P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable Low-Loss
Proton-Exchanged Linbo3 Wave-Guide Devices with No Electro-Optic
Degradation,” Optics Letters, vol. 13, no. 11, pp. 1050-1052, Nov, 1988.
[14] M. Smit, X. Leijtens, H. Ambrosius, E. Bente, J. van der Tol, B. Smalbrugge, T.
de Vries, E. J. Geluk, J. Bolk, R. van Veldhoven, L. Augustin, P. Thijs, D.
D'Agostino, H. Rabbani, K. Lawniczuk, S. Stopinski, S. Tahvili, A. Corradi, E.
Kleijn, D. Dzibrou, M. Felicetti, E. Bitincka, V. Moskalenko, J. Zhao, R. Santos,
G. Gilardi, W. M. Yao, K. Williams, P. Stabile, P. Kuindersma, J. Pello, S. Bhat,
67
Y. Q. Jiao, D. Heiss, G. Roelkens, M. Wale, P. Firth, F. Soares, N. Grote, M.
Schell, H. Debregeas, M. Achouche, J. L. Gentner, A. Bakker, T. Korthorst, D.
Gallagher, A. Dabbs, A. Melloni, F. Morichetti, D. Melati, A. Wonfor, R. Penty,
R. Broeke, B. Musk, and D. Robbins, “An introduction to InP-based generic
integration technology,” Semiconductor Science and Technology, vol. 29, no. 8,
Aug, 2014.
[15] E. G. Neumann, “Curved Dielectric Optical-Waveguides with Reduced
Transition Losses,” IEE Proceedings-H Microwaves Antennas and Propagation,
vol. 129, no. 5, pp. 278-280, 1982.
[16] D. X. Dai, and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization
beam splitter based on a bent directional coupler,” Optics Express, vol. 19, no.
19, pp. 18614-18620, Sep 12, 2011.
[17] J. F. Bauters, M. J. R. Heck, D. Dai, J. S. Barton, D. J. Blumenthal, and J. E.
Bowers, “Ultralow-Loss Planar Si3N4 Waveguide Polarizers,” IEEE Photonics
Journal, vol. 5, no. 1, Feb, 2013.
[18] L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E.
V. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single
etch-step fabrication-tolerant polarization splitter,” IEEE/OSA Journal of
Lightwave Technology, vol. 25, no. 3, pp. 740-746, Mar, 2007.
[19] E. Kleijn, M. K. Smit, and X. J. M. Leijtens, “Multimode Interference
Reflectors: A New Class of Components for Photonic Integrated Circuits,”
Journal of Lightwave Technology, vol. 31, no. 18, pp. 3055-3063, Sep 15, 2013.
[20] E. Kleijn, D. Melati, A. Melloni, T. de Vries, M. K. Smit, and X. J. M. Leijtens,
“Multimode Interference Couplers With Reduced Parasitic Reflections,” IEEE
Photonics Technology Letters, vol. 26, no. 4, pp. 408-410, Feb 15, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code