Responsive image
博碩士論文 etd-0626116-173159 詳細資訊
Title page for etd-0626116-173159
論文名稱
Title
以電漿輔助式分子束磊晶成長之氮化鎵/氮化銦鎵量子井結構在光電應用方面之研究
Study of InGaN/GaN quantum well structure grown by plasma-assisted molecular beam epitaxy for optoelectronics application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-07-27
關鍵字
Keywords
氮化鎵、纖鋅礦氮化鎵、氮化銦鎵、閃鋅礦氮化鎵、微米碟、量子井、高效率發光二極體、分子束磊晶系統
high efficiency LED, InGaN/GaN quantum wells, micro disks, Molecular Beam Epitaxy, wurtzite GaN, zinc-blende GaN
統計
Statistics
本論文已被瀏覽 5783 次,被下載 80
The thesis/dissertation has been browsed 5783 times, has been downloaded 80 times.
中文摘要
此篇論文主要在討論以電漿輔助式分子束磊晶(PA-MBE)成長應用於光電子學之氮化鎵基底的薄膜特性與分析。 高銦含量的氮化銦鎵薄膜適合在較低溫的環境下成長,而分子束磊晶系統剛好可以提供一個低溫的成長環境,相當有利於氮化銦鎵量子井的磊晶與研究。 在此實驗中,我們使用的基板是以有機金屬化學氣相沉積(MOCVD)在藍寶石基板(Al2O3)上成長矽參雜的n型氮化鎵作為本實驗的氮化鎵模板。 接著我們在此氮化鎵模板上以分子束磊晶系統來成長氮化鎵/氮化銦鎵量子井, 試著找出適合成長高銦含量以及表面平整度高的樣品成長參數。 在溫度參數對氮化銦鎵量子井的銦含量變化實驗中,考慮到銦含量以及量子井的發光效率,我們發現最適合成長氮化銦鎵量子井的溫度在570℃。 更進一步,我們發現在活性氮原子充足條件下,可以有效的提升氮化銦鎵量子井在光致發光量測的訊號強度。

為了有效的減少晶格不匹配帶來的影響,並提升發光效率,我們嘗試著在成長氮化銦鎵量子井之前,先成長一層逐漸增加銦含量的氮化銦鎵緩衝層。 在掃描式電子顯微鏡,光致發光光譜儀以及穿透式電子顯微鏡的量測結果顯示,氮化銦鎵量子井與氮化鎵薄膜間,因晶格不匹配而產生的應力確實被有效的減少。 更進一步我們發現,在相同的氮化銦鎵量子井的成長條件下,未加入緩衝層的樣品,氮化銦鎵量子井中的銦含量約在18%,再加入逐漸增加銦含量的氮化銦鎵緩衝層後,量子井中的銦含量提升到20%。 此外有加氮化銦鎵緩衝層的樣品在光致發光光譜儀的發光強度是沒有加緩衝層樣品的六倍強。 此項結果證實了加入調變銦含量的氮化銦鎵緩衝層,確實可以有效的提升氮化銦鎵量子井的銦含量以及樣品的品質。

在3D微米結構的部分,我們成功的使用分子束磊晶系統在c面的氮化鎵基板上磊晶出多種微米結構,如微米碟(厚度約300nm)、奈米柱(高度約3um)以及奈米平台結構。 根據光致發光系統、電致發光系統以及掃描式電子顯微鏡的量測結果,我們發現,當平面結構為纖鋅礦氮化鎵結構時,會在表面上成長出奈米平台狀的閃鋅礦氮化鎵結構。 相對的,當平面結構為閃鋅礦氮化鎵結構時,會在表面上成長出多晶狀的纖鋅礦氮化鎵奈米結構。 而掃描式電子顯微鏡的結果顯示,各種3D的微米結構都是成長在平台狀的閃鋅礦氮化鎵結構或多晶狀的纖鋅礦氮化鎵奈米結構上。 此外,電致發光的特殊頻譜發光圖顯示,在相同的成長環境下,相比於纖鋅礦氮化鎵的平面結構,閃鋅礦氮化鎵平面上成長的氮化銦鎵薄膜會得到較多的銦含量。
Abstract
In this dissertation, we studied the growth and characterization of the GaN-based thin film grown by plasma-assisted molecular beam epitaxy for optoelectronics application. The MBE system can provide a low-temperature growth condition to grow high-indium-content InGaN quantum wall (QW). The high-quality InGaN/GaN double QWs have been grown by PA-MBE on Si-doped GaN template. The optimized growth condition for the smooth surface and high indium content in InGaN QW has been discussed. Considering the high indium composition, high efficiency in InGaN QWs and smooth interface between InGaN QW and GaN barrier layer, the optimal growth temperature of InGaN QW is 570 ℃. And photoluminescence intensity of InGaN QWs can be increased with nitrogen-rich growth condition.

In order to reduce the large lattice mismatch between InGaN and GaN to enhance the optical efficiency, we introduce a gradual indium content InGaN buffer layer before growing the InGaN QWs. The measurement result of scanning electron microscope, x-ray diffraction, photoluminescence, and transmission electron microscopy does support that lattice mismatch and strain between InGaN and GaN can be released. Moreover, the intensity of InGaN QWs can be increased sixfold compared with that of the original structure after introducing the gradual indium content InGaN buffer layer.

In addition, we grow microstructure with the different appearances, such as microdisks, nanorods, and mesa-like nanocrystals, in the c-plane GaN template by PA-MBE. Comparing with PL, CL spectrum and SEM image, the results represent the wurtzite GaN surface structure can provide a base to grow hexagonal mesa-like nanocrystal with zinc-blende GaN structure. And the zinc-blende GaN surface structure can provide a base to grow irregular nanostructures with wurtzite GaN structure. The other way, we find that zinc-blende GaN is contributed to growing high indium content InGaN than wurtzite GaN.
目次 Table of Contents
Table of contents

Verification Letter (論文審定書) i

Acknowledgement (誌謝) ii

Chinese Abstract (中文摘要) iv

English Abstract vi

List of figures x

List of tables xvi

1. Introduction 1
1.1 Ⅲ-nitride compound semiconductor…………………………………………..1
1.2 Motivation……………………………………………………………………..4
1.3 plasma-assisted molecular beam epitaxy……………………………………...7

2. Characterization of InGaN/GaN double quantum wells grown 11
by PA-MBE on GaN template
2.1 Background………………………………………………………………….11
2.2 Parameter of sample growth………………………………………………...12
2.3 Results and discussion………………………………………………………15
2.4 Summery……………………………………………………………………32

3. Growth of high indium content InxGa1-xN/GaN quantum wells 34
with graded InyGa1-yN buffer
3.1 Background…………………………………………………………………34
3.2 Experimental methods………………………………………………………35
3.3 Results and discussion………………………………………………………39
3.4 Summery……………………………………………………………………50

4. Luminescence properties of wurtzite and zinc-blende GaN 51
microstructures grown on GaN template
4.1 Background…………………………………………………………………51
4.2 Sample growth………………………………………………………………53
4.3 Results and discussion………………………………………………………54
4.4 Summery……………………………………………………………………74

5. Conclusion 75

References 77

Publications 83
參考文獻 References
Reference:

[1] S. Nakamura, M. Senoh, N. Iwasa, S.-I. Nagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. 34, L1332 (1995).
[2] Khan, M. A.: US5192987 (1993)
[3] H. Maruska and J. Tietjen, Appl. Phys. Lett 15, 327 (1969)
[4] S. Nakamura, Science 281, 956 (1998)
[5] F. Yun, M. Reshchikov, L. He, T. King, H. Morkoc, S. Novak and L. Wei, J. Appl. Phys. 92, 4837 (2002)
[6] H. Maruska, D. Stevenson and J. Pankove, Appl. Phys. Lett. 22, 303 (1973)
[7] J. Pankove, E. Miller and J. Berkeyheiser, J. Lumin. 5, 84 (1972)
[8] H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986)
[9] H. Amano, M. Kito, K. Hiramatsu and I. Akasaki, Jpn. J. Appl. Phys, 28, L2122 (1989)
[10] S. Nakamura, N. Iwasa, M. Senoh and T. Mukai, Jpn. J. Appl. Phys., Part 1 31, 1258 (1992)
[11] M.A. Khan, T.N. Kuznia, A.R. Bhattaraia, D.T. Olson, Appl. Phys. Lett. 62, 1786 (1993)
[12] E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
[13] J.-H. Lee and J.-H. Lee, IEEE Electron Device Lett. 31, 455 (2010)
[14] S. Pimputkar, J. Speck, S. P. Denbaars, and S. Nakamura, Nat. Photonics 3, 180 (2009)
[15] F. A. Ponce and D. P. Bour, Nature 386, 351 (1997)
[16] N. Horiuchi, Nat. Photonics 4, 738 (2010).
[17] Y. C. Hsu, I. Lo, C. H. Shih, W. Y. Pang, C. H. Hu, Y. C. Wang, C. D. Tsai, M. M. C. Chou, and G. Z. L. Hsu, Appl. Phys. Lett. 104, 102105 (2014).
[18] M. Moseley, B. Gunning, J. Greenlee, J. Lowder, G. Namkoong, and W. A. Doolittle, J. Appl. Phys. 112, 014909 (2012).
[19] Z. Gacevic, V. J. Gomez, N. Garcıa Lepetit, P.E.D. Soto Rodriguez, A. Bengoechea, S. Fernandez-Garrido, R. N¨otzel, and E. Calleja, J. Cryst. Growth 364, 123 (2013).
[20] T. Yamaguchi, N. Uematsu, T. Araki, T. Honda, E. Yoon, and Y. Nanishi, J. Cryst. Growth 377, 123 (2013).
[21] T. Pinnington, D. D. Koleske, J. M. Zahler, C. Ladous, Y.-B. Park, M.H. Crawford, M. Banas, G. Thaler, M.J. Russell, S.M. Olson, and H. A. Atwater, J. Cryst. Growth 310, 2514 (2008).
[22] I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
[23] O. Madelung, Semiconductors: Group IV Elements and III-V Compounds, Data in Science and Technology, (Spring, New York, 1991) ed. p. 86.
[24] H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, Opt. Express 19, A991 (2011).
[25] Y. C. Hsu, I. Lo, C. H. Shih, W. Y. Pang, C. H. Hu, Y. C. Wang, and M. M. C. Chou, Appl. Phys. Lett. 100, 242101 (2012).
[26] T. Akasaka, H. Gotoh, Y. Kobayashi, H. Nakano, and T. Makimoto, Appl. Phys. Lett. 89, 101110 (2006).
[27] Y. J. Lee, C. H. Chen, and C. J. Lee, IEEE Photonics Technol. Lett. 22, 20 (2010).
[28] Y. Li, B. Liu, R. Zhang, Z. Xie, Z. Zhuang, J. P. Dai, T. Tao, T. Zhi, G. Zhang, P. Chen, F. Ren, H. Zhao, and Y. Zheng, J. Appl. Phys. 117, 153103 (2015).
[29] J.-I. Hwang, R. Hashimoto, S. Saito, and S. Nunoue, Appl. Phys. Express 7, 071003 (2014).
[30] Y. L. Chen, I. Lo, M. H. Gau, C. H. Hsieh, M. W. Sham, W. Y. Pang, Y. C. Hsu, J. K. Tsai, R. Schuber, D. Schaadt, Thin Solid Films 520, 6134 (2012).
[31] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode (Springer, Berlin, 2000) 2nd ed., Chap. 10, p. 215.
[32] “The Nobel Prize in Physics 2014.” Nobelprize.org.
[33] Z. X. Bi, R. Zhang, Z. L. Xie, X. Q. Xiu, Y. D. Ye, B. Liu, S. L. Gu, Y. Shi, Y.D. Zheng, Materials Science Forum 475-479, 3717 (2005)
[34] C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo, and Y. C. Lin, IEEE Photonics Technol. Lett. 14, 908 (2002)
[35] C. Skierbiszewaski, Z. R. Wasilewski, I. Grzegory, S. Porowski, J. Cryst. Growth 311, 1632 (2009)
[36] H. P. Trung Nguyen, K. Cui, S. Zhang, M. Djavid, A. Korinek, G. A. Botton, and Z. Mi, Nano Lett. 12, 1317 (2012)
[37] Y. L. Hu, R. M. Farrell, C. J. Neufeld, M. Iza, S. C. Cruz, N. Pfaff, D. Simeonov, S. Keller, S. Nakamura, S. P. Den Baars, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 100, 161101 (2012).
[38] J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, J. J. Zhu, Z. S. Liu, L. C. Le, X. J. Li, X. G. He, J. P. Liu, H. Yang, Y.T. Zhang, and G. T. Du, J. Appl. Phys. 117, 055709 (2015).
[39] Y. K. Kuo, W. W. Lin, and J. Lin, Jpn. J. Appl. Phys. 40, 3157 (2001).
[40] J. Wu, J. Appl. Phys. 106, 011101 (2009)
[41] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, IEEE J. Sel. Top. Quantum Electron 8, 2 (2002)
[42] Z. Y. Fan and N. Newman, Mater. Sci. Eng. B 87, 244 ( 2001)
[43] U. Kaufmann, M. Kunzer, H. Obloh, M. Maier, C. Manz, A. Ramakrishnan, and B. Santic , Phys. Rev. B 59, 5561–5567 (1999)
[44] C. Skierbiszewski, Z.R. Wasilewski, I. Grzegory, S. Porowski, J. Cryst. Growth 311, 1632 (2009)
[45] J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, J. J. Zhu, Z. S. Liu, L. C. Le, X. J. Li, X. G. He, J. P. Liu, H. Yang, Y.T. Zhang, and G. T. Du, J. Appl. Phys. 117, 055709 (2015).
[46] S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu, and U. H. Liaw, IEEE J. Sel. Top. Quantum Electron 8, 2 (2002)
[47] L. Vegard, Z. Phys. 5, 17 (1921).
[48] S. Valdueza-Felip, E. Bellet-Amalric, A. Núñez-Cascajero, Y. Wang, M. P. Chauvat, P. Ruterana, S. Pouget, K. Lorenz, E. Alves, and E. Monroy, J. Appl. Phys. 116, 233504 (2014)
[49] D. D. Kolesle, S. R. Lee, M. H. Crawford, K. C. Cross, M. E. Coltrin, and J. M. Kempisty, J. Cryst. Growth 391, 85 (2014).
[50] J. Wu, J. Appl. Phys. 106, 011101 (2009)
[51] R. Hashimoto, J. Hwang, S. Saito, and S. Nunoue, Phys. Status Solidi C 10, 1529 (2013)
[52] H. Yang, L. X. Zheng, J. B. Li, X. J. Wang, D. P. Xu, Y. T. Wang, X. W. Hu, and P. D. Han, Appl. Phys. Lett. 74, 2498 (1999)
[53] D. J. As, A. Richter, J. Busch, M. Lubbers, J. Mimkes, and K. Lischka, Appl. Phys. Lett. 76, 13 (2000)
[54] J.H.V.D. Merwe, Crystal interfaces. Part II finite overgrowths, J. Appl. Phys. 34 123–127. (1963)
[55] J.W. Matthews, S. Mader, T.B. Light, J. Appl. Phys. 41 3800–3804 (1970)
[56] F.A. Marino, N. Faralli, T. Palacios, D.K. Ferry, S.M. Goodnick, M. Saraniti, IEEE Trans. Electron Devices 57 353–360 (2010)
[57] M.F. Schubert, S. Chhajed, J.K. Kim, E.F. Schubert, D.D. Koleske, M.H. Crawford, S.R. Lee, A.J. Fischer, G. Thaler, M.A. Banas, Appl. Phys. Lett. 91 231114 (2007)
[58] S.D. Hersee, A.K. Rishinaramangalam, M.N. Fairchild, L. Zhang, P. Varangis, J. Mater. Res. 17 2293–2298 (2011)
[59] C.V. Falub, H. von Känel, F. Isa, R. Bergamaschini, A. Marzegalli, D. Chrastina, G. Isella, E. Müller, P. Niedermann, L. Miglio, Science 335 1330–1334(2012)
[60] O. Landré, D. Camacho, C. Bougerol, Y.M. Niquet, V. Favre-Nicolin, G. Renaud, H. Renevier, B. Daudin, Phys. Rev. B 81 153306(2010)
[61] S.D. Carnevale, T.F. Kent, P.J. Phillips, M.J. Mills, S. Rajan, R.C. Myers, Nano Lett. 12 915–920 (2012)
[62] K.A. Bertness, N.A. Sanford, J.M. Barker, J.B. Schlager, A. Roshko, A.V. Davydov, I. Levin, J. Electron. Mater. 35 576–580 (2006)
[63] S. Zhao, M.G. Kibria, Q. Wang, H.P.T. Nguyen, Z. Mi, Nanoscale 5 5283–5287 (2013)
[64] M. Wölz, C. Hauswald, T. Flissikowski, T. Gotschke, S. Fernández-Garrido, O. Brandt, H.T. Grahn, L. Geelhaar, H. Riechert, Nano Lett. (2015)
[65] T.S. Zheleva, S.A. Smith, D.B. Thomson, K.J. Linthicum, P. Rajagopal, R.F. Davis, J. Electron. Mater. 28 L5–L8 (1999)
[66] J. Kamimura, K. Kishino, A. Kikuchi, AIP Adv. 1 042145 (2011)
[67] I. Lo, Y. C. Hsu, C. H. Hsieh, W. Y. Pang, M. C. Chou, Y. L. Chen, C. H. Shih and Y.-C. Wang, Appl. Phys. Lett. 96, 222105 (2010)
[68] Semiconductors: Intrinsic Properties of Group IV Elements and III-V, II-VI and I-VII Compounds, edited by O. Madelung, W. van der Osten, U. Rossler, Landolt Bornstein, New Series III, 22a (Springer, Berlin, 1987)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code