Responsive image
博碩士論文 etd-0626117-123336 詳細資訊
Title page for etd-0626117-123336
論文名稱
Title
多個電池電源模組串聯之輸出穩壓與均放電控制
Output voltage regulation with balanced discharge control of multiple battery modules in series connection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-03
繳交日期
Date of Submission
2017-07-27
關鍵字
Keywords
電池電源模組、平衡放電、穩壓控制、線性二次調節器、升壓式轉換器
boost converter, battery power modules, balanced discharge, output voltage regulation, linear quadratic regulator
統計
Statistics
本論文已被瀏覽 5681 次,被下載 20
The thesis/dissertation has been browsed 5681 times, has been downloaded 20 times.
中文摘要
本論文針對一升壓式轉換器搭配電池電源模組 (Battery Power Modules, BPMs) 輸出串聯架構設計具平衡放電性質之輸出穩壓控制器。輸出串聯架構之優點在於能夠提供較高的輸出電壓,且各模組均可以行獨立放電控制。

本文先針對電池電源模組輸出串聯架構,運用狀態空間平均法進行模型分析,推導一平均非線性動態模型。之後,吾人在針對特定操作點對模型線性化,導出一線性非時變之近似模型。吾人應用線性二次調節器 (Linear Quadratic Regulation, LQR) 方法,並藉特定的權重函數來設計一個強健的穩壓控制器。最後,為了達到平衡放電的功能,吾人在設計一個回授機制,利用各模組之個別電壓與平均電壓之差異調節個別模組參與放電的程度,來達到平衡放電的目的。本文最後以數值模擬軟體MATLAB驗證其是否具備平衡放電,且達到穩定輸出電壓,對於負載改變時仍可按參考指令穩定輸出吾人所欲之端電壓。
Abstract
In this thesis, we consider the control design problem of output voltage regulation with balanced discharge for a boost converter with battery power modules (BPMs) in output series connection. One of the advantages of the output series connection is that such circuits are able to provide a higher collective output voltage, while at the same time each battery modules can be regulated to discharge independently.

In this thesis, we first apply the state-space averaging approach to establish a nonlinear average dynamical model. Furthermore, we linearize the model around a given operating point to derive a linear time invariant approximation for the nonlinear model. Linear Quadratic Regulation (LQR) approach is then applied to design a robust output voltage regulator based on an integral weighting function. Lastly, to achieve balanced discharge, an additional feedback mechanism for each BPM is introduced. The mechanism is linear feedback based on the difference between the voltage of the individual module and the average voltage among the modules. The effectiveness of our design is verified by numerical simulations using the software package MATLAB. The results of our numerical experiments indicate that our design is robust against load variation, and the controller is indeed able to regulate the output voltage to a given desired value while maintaining balanced discharge among the BPMs.
目次 Table of Contents
誌謝 i
中文摘要 ii
Abstract iii
目錄 iv
圖次 vii
表次 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機、目的與貢獻 2
1.3 論文架構 3
第二章 預備知識 4
2.1 建立轉換器數學模型的方法 4
2.1.1 電流注入法 4
2.1.2 電路平均法 6
2.1.3 狀態空間平均法 6
2.2 轉換器之調變模式 7
2.2.1 脈波寬度調變 7
2.2.2 脈波頻率調變 8
2.3 平均相位移控制 8
2.4 線性化 9
第三章 電池電源模組 12
3.1 直流對直流轉換器 12
3.1.1 基本型升壓轉換器 12
3.2 建立電路模型 17
3.3 電池電源模組輸出並聯架構 18
3.4 電池電源模組輸出串聯架構 19
3.4.1 多組升壓式電池電源模組輸出串聯運轉之連續導通模式. 20
3.5 升壓式電池電源模組輸出串聯之數學模型分析 22
3.5.1 平均相位移分析 22
3.5.2 狀態空間分析 28
3.5.3 狀態空間平均法 44
3.5.4 無限多組升壓式電池電源模組輸出串聯架構之模型 53
第四章 應用LQR 設計具備平衡放電之升壓式電池電源模組輸出串聯之控制器 55
4.1 LQR 控制器設計 55
4.1.1 LQR 控制器設計與分析 55
4.1.2 升壓式電池電源模組輸出串聯之LQR 控制器設計 57
4.2 電池電源模組輸出串聯之平衡放電控制器設計 62
4.2.1 電池電壓量測 62
4.2.2 平衡放電控制器設計方法 63
4.3 升壓式電池電源模組輸出串聯控制器模擬 64
4.3.1 控制系統架構 64
4.3.2 模擬結果 65
第五章 結論與未來展望 74
5.1 結論 74
5.2 未來展望 74
參考文獻 75
參考文獻 References
[1] T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, “Climate change 2013: The physical science basis,” 2014.
[2] A. C. Baughman and M. Ferdowsi, “Double-tiered switched-capacitor battery charge equalization technique,” IEEE Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2277–2285, 2008.
[3] Y.-S. Lee and M.-W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Transactions on Industrial electronics, vol. 52, no. 5, pp. 1297–1307, 2005.
[4] C. Chan, “An overview of electric vehicle technology,” Proceedings of the IEEE, vol. 81, no. 9, pp. 1202–1213, 1993.
[5] P. T. Krein and R. S. Balog, “Life extension through charge equalization of lead-acid batteries,” in Telecommunications Energy Conference, 2002. INTELEC. 24th Annual International, pp. 516–523, IEEE, 2002.
[6] S. West and P. T. Krein, “Equalization of valve-regulated lead-acid batteries: issues and life test results,” in Telecommunications Energy Conference, 2000. INTELEC. Twenty-second International, pp. 439–446, IEEE, 2000.
[7] D. C. Hopkins, C. R. Mosling, and S. T. Hung, “Dynamic equalization during charging of serial energy storage elements,” IEEE Transactions on Industry Applications, vol. 29, no. 2, pp. 363–368, 1993.
[8] T. Gottwald, Z. Ye, and T. Stuart, “Equalization of ev and hev batteries with a ramp converter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33, no. 1, pp. 307–312, 1997.
[9] C.-S. Moo, K. S. Ng, and Y.-C. Hsieh, “Parallel operation of battery power modules,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 701–707, 2008.
[10] 胡錦欣, 電池電源模組之輸出串聯運轉. 國立中山大學電機工程學系碩士論文, 民國 98 年.
[11] C.-C. Fang and E. H. Abed, “Output regulation of dc-dc switching converters using discrete-time integral control,” in American Control Conference, 1999. Proceedings of the 1999, vol. 2, pp. 1052–1056, IEEE, 1999.
[12] S. Almer, U. Jonsson, C.-Y. Kao, and J. Mari, “Global stability analysis of dc-dc converters using sampled-data modeling,” in American Control Conference, 2004. Proceedings of the 2004, vol. 5, pp. 4549–4554, IEEE, 2004.
[13] A. Fossard, M. Clique, J. Ferrante, and A. Capel, “A general linear continuous model for design of power conditioning units at fixed and free running frequency,” in Power Electronics Specialists Conference, 1977 IEEE, pp. 113–124, IEEE, 1977.
[14] M. Hissem, A. Chériti, P. Sicard, and A. Ba-Razzouk, “Application of the currentinjected modeling approach to quasi-resonant converters,” IEEE transactions on power electronics, vol. 12, no. 4, pp. 695–703, 1997.
[15] A. Kislovski, Dynamic analysis of switching-mode DC/DC converters. Springer Science & Business Media, 2012.
[16] A. Kislovski and R. Redl, “Generalization of the injected-absorbed-current dynamic analysis method of dc-dc switching power cells,” in Circuits and Systems, 1992. ISCAS’92. Proceedings., 1992 IEEE International Symposium on, vol. 4, pp. 1895– 1898, IEEE, 1992.
[17] G. W. Wester and R. D. Middlebrook, “Low-frequency characterization of switched dc-dc converters,” IEEE Transactions on Aerospace and electronic Systems, no. 3, pp. 376–385, 1973.
[18] R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007.
[19] R. Middlebrook, “Small-signal modeling of pulse-width modulated switched-mode power converters,” Proceedings of the IEEE, vol. 76, no. 4, pp. 343–354, 1988.
[20] M. Tajuddin, N. Rahim, I. Daut, B. Ismail, and M. Mohammed, “State space averaging technique of power converter with digital pid controller,” in TENCON 2009-2009 IEEE Region 10 Conference, pp. 1–6, IEEE, 2009.
[21] J. Sun, D. M. Mitchell, M. F. Greuel, P. T. Krein, and R. M. Bass, “Averaged modeling of pwm converters operating in discontinuous conduction mode,” IEEE Transactions on power electronics, vol. 16, no. 4, pp. 482–492, 2001.
[22] D. Maksimovic and S. Cuk, “A unified analysis of pwm converters in discontinuous modes,” IEEE Transactions on Power Electronics, vol. 6, no. 3, pp. 476–490, 1991.
[23] N. Kondrath and M. K. Kazimierczuk, “Comparison of wide-and high-frequency duty-ratio-to-inductor-current transfer functions of dc–dc pwm buck converter in ccm,” IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 641–643, 2012.
[24] H. Mao, J. Abu-Qahouq, S. Luo, and I. Batarseh, “Zero-voltage-switching halfbridge dc-dc converter with modified pwm control method,” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp. 947–958, 2004.
[25] K. Hwu and Y. Yau, “Improvement of one-comparator counter-based pfm control for dc-dc converter,” in Industrial Electronics, 2009. ISIE 2009. IEEE International Symposium on, pp. 1604–1607, IEEE, 2009.
[26] B. Sahu and G. A. Rincon-Mora, “An accurate, low-voltage, cmos switching power supply with adaptive on-time pulse-frequency modulation (pfm) control,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 2, pp. 312– 321, 2007.
[27] B. C. Kuo, Automatic control systems. Prentice Hall PTR, 1987.
[28] D. W. Hart, Power electronics. Tata McGraw-Hill Education, 2011.
[29] J.-H. Su, J.-J. Chen, and D.-S. Wu, “Learning feedback controller design of switching converters via matlab/simulink,” IEEE Transactions on education, vol. 45, no. 4, pp. 307–315, 2002.
[30] H. Fujioka, C.-Y. Kao, S. Almér, and U. Jönsson, “Lq optimal control for a class of pulse width modulated systems,” Automatica, vol. 43, no. 6, pp. 1009–1020, 2007.
[31] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic methods. Courier Corporation, 2007.
[32] S.-H. Yu and M.-H. Tseng, “Optimal control of a nine-level class-d audio amplifier using sliding-mode quantization,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 3069–3076, 2011.
[33] S. Piller, M. Perrin, and A. Jossen, “Methods for state-of-charge determination and their applications,” Journal of power sources, vol. 96, no. 1, pp. 113–120, 2001.
[34] S. Pang, J. Farrell, J. Du, and M. Barth, “Battery state-of-charge estimation,” in American Control Conference, 2001. Proceedings of the 2001, vol. 2, pp. 1644– 1649, IEEE, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code