Responsive image
博碩士論文 etd-0626117-123629 詳細資訊
Title page for etd-0626117-123629
論文名稱
Title
以化學汽相沉積法磊晶生長氧化鎵於氮化鋁/藍寶石基板
Epitaxial growth of gallium oxide on AlN/sapphire substrate by chemical vapor deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
60
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-07-26
關鍵字
Keywords
霍爾量測、寬能隙半導體、化學汽相沉積法、氧化鎵、氮化鋁、藍寶石
Hall measurement, wide bandgap semiconductor, chemical vapor deposition, gallium oxide, aluminum nitride, sapphire
統計
Statistics
本論文已被瀏覽 5661 次,被下載 21
The thesis/dissertation has been browsed 5661 times, has been downloaded 21 times.
中文摘要
本研究使用化學汽相沉積法(chemical vapor deposition, CVD),磊晶生長氧化鎵於氮化鋁/藍寶石(AlN/sapphire)基板。本實驗使用氮氣及氧氣分別作為載送氣體及反應氣體,以鎵金屬作為反應源,改變生長溫度、生長時間、生長壓力、氣體流量比的實驗條件,實驗完成後,以掃描式電子顯微鏡(SEM)、X光繞射分析(XRD)、穿透式電子顯微鏡(TEM)、穿透光譜分析、陰極螢光光譜(CL)、霍爾量測(Hall effect measurement)做分析,探討在不同實驗條件下,氧化鎵的微觀形貌、生長方向、晶體結構、發光特性及電性。
本研究主要分為四部份:第一部份研究生長溫度對氧化鎵磊晶的影響。第二部份則以第一部分研究之最佳生長溫度,固定溫度並改變反應時間。第三部份實驗以生長壓力做為改變之實驗參數,第四部份為改變氮氣/氧氣流量比,觀察氧化鎵在不同條件下磊晶生長的情形。
實驗結果在氮化鋁/藍寶石基板上磊晶生長出β-氧化鎵,在生長溫度950℃,生長時間90分鐘,壓力75 torr,氮氣/氧氣比為100 sccm/20 sccm之條件下,得到以(2 ̅01)為優選方向的β–Ga2O3,其膜厚為256 nm,生長速率約為2.84 nm/min,其能隙值約為4.74 eV,此條件下生長的氧化鎵為n-type的半導體材料。
Abstract
Being a wide bandgap semiconductor material, gallium oxide (Ga2O3) has been prepared by many methods. In this study, gallium oxide was grown on AlN/sapphire single crystal substrate by chemical vapor deposition (CVD), by a reaction of gallium (Ga) and oxygen (O2) mixture. Nitrogen and oxygen were used as carrier gas and reaction gas, respectively. The effect of the growth temperature, time, pressure and flow rate of growth on structure of films has been investigated. The characteristics of Ga2O3, such as surface morphology, crystal structure, orientation of the film, and optical properties were analyzed by scanning electron microscope, x-ray diffractometer, transmission electron microscope, Transmissionphoto spectroscopy, cathodoluminescence, hall effect measurement.
There were four parts in the experiment: Firstly, the temperature of growth process was investigated. Secondly, based on the optimal growth temperature of first part, we adjusted the time of growth process. The third changed parameter of experiment was the pressure of growth process. Finally, regulating the flow rate of ratio of nitrogen and oxygen was examined.
According to the result, Ga2O3 single crystal with (2 ̅01)β–Ga2O3, (4 ̅02)β–Ga2O3, and (6 ̅03)β–Ga2O3 orientations was observed. The thickness of epitaxial film was 256 nm, and the rate of growth was 2.84 nm/min. The β–Ga2O3 was n-type conductivity, and the bandgap was 4.74eV.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
第二章 文獻回顧與理論基礎 2
2.1 氧化鎵材料(Gallium Oxide,Ga2O3) 2
2-1-1 氧化鎵的結構與基本性質 2
2-1-2 氧化鎵的放光性質 2
2-1-3 氧化鎵的製程及應用 3
2-2 藍寶石(sapphire)的結構與性質 3
2-3 氮化鋁(AlN)的結構與性質 4
2-4 化學汽相沉積法(chemical vapor deposition, CVD) 4
2-5 研究動機 6
第三章 實驗內容 8
3-1 實驗流程 8
3-2 實驗裝置 8
3-2-1 反應氣體輸送裝置 9
3-2-2 加熱反應爐 9
3-2-3 真空抽氣裝置 9
3-3實驗步驟 9
3-3-1 基板前處理 9
3-3-2 反應源製備 9
3-3-3 磊晶生長氧化鎵 10
3-4 分析方法 10
3-4-1 X光繞射分析儀分析 (X-Ray diffraction, XRD) 10
3-4-2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 11
3-4-3 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 11
3-4-4 穿透光譜分析(Transmissionphoto spectroscopy) 12
3-4-5 陰極螢光光譜分析 (Cathodoluminescence, CL) 12
3-4-6 霍爾效應量測分析(Hall effect measurement) 13
第四章 實驗結果與討論 17
4-1 生長溫度對氧化鎵磊晶的影響 17
4-1-1 X光繞射分析 17
4-1-2 微觀形貌分析 20
4-2 生長時間對氧化鎵磊晶的影響 23
4-2-1 X光繞射分析 23
4-2-2 微觀形貌分析 26
4-3 生長壓力對氧化鎵磊晶的影響 29
4-3-1 X光繞射分析 29
4-3-2 微觀形貌分析 31
4-4 氣體流量比對氧化鎵磊晶的影響 33
4-4-1 X光繞射分析 34
4-4-2 微觀形貌分析 37
4-5 穿透式電子顯微鏡分析(TEM) 40
4-6 穿透光譜分析 42
4-7 陰極螢光光譜分析 (CL) 43
4-8 霍爾量測分析(Hall effect measurement) 46
第五章 結論 48
第六章 參考文獻 49
參考文獻 References
1. M. Fleischer, L. Höllbauer, H. Meixner, Sensors and Actuators, B: Chemical, 18, 1, 3 (1994) 119
2. N.Ueda, H.Hosono, R.Waseda, H.Kawazoe, Applied Physics, 70 (1997) 3561
3. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, S. Fujita, Applied Physics Express, 1 (2008) 011202.
4. P. C. Chang, Z. Fan, W. Y. Tseng, A. Rajagopal, J. G. Lu, Applied Physics Letters, 87 (2005) 222102
5. S. Kumar, R. Singh, Physica Status Solidi RRL, 7, 10 (2013) 781
6. K. Matsuzaki, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films, 496 (2006) 37
7. S. Geller, The Journal of Chemical Physics, 33 (1960) 676
8. J.Åhman,G. Svensson, and J. Albertsson, Acta Crystallographica, C52 (1996)1336
9. L. Binet, D. Gourier, Journal of Physic and Chemistry Solids, 59, 8 (1998) 1241
10. E.G. V´illora, M. Yamaga, T. Iniue, S. Yabasi,Y. Masui, T Sugawara, T.Fukuda, Japanese Journal of Applied Physics, 41, 2, 6A (2002) 622
11. T. Harwig and F. Kellendonk, Journal of Solid State Chemistry, 24 (1978) 255
12. E.G. V´illora, T. Atou, T. Sekiguchi, T. Sugawara, M. Kikuchi, T. Fukuda, Solid State Communications, 120 (2001) 455
13. M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, H. Hosono, Thin Solid Films, 411 (2002) 134
14. M. Ogita, K. Higo, Y. Nakanishi, Y. Hatanaka, Apply Surface Science, 175-176 (2001) 721
15. T. Oshima, T. Okuno, S. Fujita, Japanese Journal of Applied Physics, 46, 11 (2007) 7217
16. D.J. Comstock, J.W. Elam, Chemistry of Materials, 24 (2012) 4011
17. H.W. Kim, N.H. Kim, Materials Science and Engineering B, 110 (2004) 34
18. M. Orita, H. Ohta, M. Hirano, H. Hosono, Applied Physics Letters, 77 (2000) 25
19. C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Taoa , X. Zhao, Royal Society of Chemistry Advances, 6 (2016) 78322
20. D. Shinohara, S. Fujita, Japanese Journal of Applied Physics, 47, 9 (2008) 7311
21. M.V.K. Neklyudova, K.S. Bagdasarov, Ruby & Sapphire (1974)
22. C.P. Khattak, R. Shetty, C.R. Schwerdtfeger, S. Ullal, Journal of Crystal Growth, 452 (2016) 44
23. Lev I. Berger, Semiconductor Materials (2014)123
24. E. Ruiz, S. Alvarez, Physics Review B, 49, 11 (1994) 7115
25. H. O. Pierson, Handbook of Chemical Vapor Deposition, Second Edition, 12 (1999) 114
26. S. Nakagomi, Y. Kokubun, Journal of Crystal Growth, 349 (2012) 12
27. C.Y Huang, R.H. Horng, D.S. Wu, L.W. Tu, H.S. Kao, Applied Physics Letters, 102 (2013) 011119
28. Y. Lv, J. Ma, W. Mi, C. Luan, Z. Zhu, H. Xiao, Vacuum, 86 (2012)1850
29. M. Eckert, Max von Laue and the discovery of X-ray diffraction in 1912, 524, 5 (2012) A83
30. D. L. Perry, Handbook of Inorganic Compounds, 1235 (2011) 175
31. P. Deák, Q.D.Ho, F. Seemann, B.Aradi, M. Lorke, T. Frauenheim, Physical Review B, 95 (2017) 075208
32. G.G. Navarro, M.H. Zaldı´var, J.V. Benavides, D. Maestre, Journal of Applied Physics, 110 (2011) 034315
33. E.G Vı́llora, T. Atou, T. Sekiguchi, T. Sugawara, M. Kikuchi, T. Fukuda, Solid State Communications, 120, 11 (2001) 455
34. Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, R. Fornari, Crystal Research and Technology, 45, 12 (2010) 1229
35. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, R. Fornari, Journal of Applied Physics, 110 (2011) 063720
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code