Responsive image
博碩士論文 etd-0626117-132809 詳細資訊
Title page for etd-0626117-132809
論文名稱
Title
以化學汽相沉積法磊晶生長氧化鎵於(001)鎵酸鋰基板
Epitaxial Growth of Gallium Oxide on (001) LiGaO2 Substrate by Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-07-27
關鍵字
Keywords
寬能隙半導體、化學汽相沉積法、磊晶、鎵酸鋰、氧化鎵
Epitaxy, Chemical Vapor Deposition, LiGaO2, Gallium Oxide
統計
Statistics
本論文已被瀏覽 5632 次,被下載 66
The thesis/dissertation has been browsed 5632 times, has been downloaded 66 times.
中文摘要
本論文研究以化學汽相沉積法磊晶成長氧化鎵(Gallium Oxide,Ga2O3)於(001)鎵酸鋰(LiGaO2,LGO)基板,本實驗以鎵金屬做為反應源,使用高純度氧氣為反應氣體,氮氣為載流氣體。
本實驗主要可分為四部份:第一部份實驗為探討不同的成長溫度,第二部分為探討在不同的氣體流量下,第三部分為探討不同的成長壓力,第四部分為改變成長的時間,透過不同的實驗條件進而觀察氧化鎵薄膜生長之影響變化。
試片以化學汽相沉積法生長完成後,使用X光繞射儀(XRD)、掃瞄式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、陰極發光光譜(CL)、原子力顯微鏡(AFM)、吸收光譜和霍爾效應(Hall effect)量測分析氧化鎵薄膜其結晶方向與性質、微觀形貌、晶體結構、生長機制、光學性質、表面粗糙度、能隙大小以及載子種類等研究。
研究寬能隙半導體材料氧化鎵薄膜之成長情形,實驗結果在成長溫度為780℃、反應壓力為45torr、氣體流量為O2 / N2為100 / 100 sccm、成長時間為90min時的條件下可獲得較平整的連續氧化鎵(β-Ga2O3)薄膜,其結晶品質亦較優良,且放光性質主要落在紫外光波段,並具有寬能隙值4.93eV,為n型半導體。
Abstract
In this thesis, we use LiGaO2 (LGO)(001) substrate to grow on epitaxial gallium oxide (Ga2O3) by chemical vapor deposition (CVD). Pure gallium metal is used as reaction source. High purity nitrogen and oxygen are used as carrier gas and reaction gas, respectively.
The experiment has four parts. First, epitaxial gallium oxide growth under various temperatures were investigated. Second, the dependence of growth characteristics in different oxygen partial pressure were investigated. In the third part, the dependence of growth characteristics in different growth pressure were investigated. In last part, the dependence of epitaxial gallium oxide growth time were investigated.
Crystal quality of Ga2O3 was investigated by X-ray diffraction (XRD). The surface morphology and crystal structure were analyzed using Scanning electron microscope (SEM). The growth mechanism were analyzed using transmission electron microscope (TEM). Furthermore, cathodoluminescence (CL), atomic force microscope(AFM), transmissionphoto spectroscopy and hall effect were used to study optical properties, the surface roughness of the materials, energy band gap and carrier type.
The wide bandgap semiconductor material of β-Ga2O3 can be obtained at the growth parameters of 780°C, 45 torr, 100/100 sccm of O2/N2 and 90 minutes. The analytic results of cathodoluminescence showed the luminescence property of ultraviolet emission, and showed the band gap of 4.93 eV. The n-type Ga2O3 films were grown on the LGO substrate.
目次 Table of Contents
摘要..................................................................I
Abstract............................................................. II
目錄................................................................III
圖目錄..............................................................IV
表目錄..............................................................VII
第一章 序論........................................................1
第二章 文獻回顧與理論基礎..........................................2
2.1 氧化鎵(Gallium Oxide, Ga2O3)的結構與性質..........................2
2.2 鎵酸鋰(LiGaO2,LGO)的結構與性質.................................4
2.3 薄膜沉積技術(Thin Film Deposition).................................5
2.4 化學汽相沉積技術(Chemical Vapor Deposition, CVD)....................6
2.4.1化學氣相沉積的種類與比較....................................6
2.4.2化學氣相沉積的反應機制......................................7
2.5 反應器腔體傳輸現象..............................................10
2.5.1反應氣流的流動現象.........................................11
2.5.2反應氣流的擴散與熱擴散現象.................................13
2.6 異質磊晶成長....................................................14
2.7 研究動機........................................................16
第三章 實驗內容...................................................17
3.1 實驗流程........................................................17
3.2 實驗裝置........................................................17
3.3 實驗方法與步驟..................................................18
3.4 分析原理........................................................19
第四章 實驗結果與討論.............................................24
4.1 成長溫度對於氧化鎵磊晶薄膜的影響................................24
4.2 氣體流量對於氧化鎵磊晶薄膜的影響................................29
4.3 成長壓力對於氧化鎵磊晶薄膜的影響................................33
4.4 成長時間對於氧化鎵磊晶薄膜的影響................................36
4.5 X光繞射( X-ray Diffraction, XRD )分析...............................38
4.6 成份分析........................................................40
4.7 穿透式電子顯微鏡( Transmission Electron Microscope, TEM )分析........44
4.8 原子力顯微鏡( Atomic Force Microscope, AFM )分析...................48
4.9 陰極發光光譜( Cathodoluminescence spectrum, CL )分析.................49
4.10 穿透光譜( Transmissionphoto spectroscopy )分析.......................52
4.11 霍爾效應( Hall effect )分析.........................................54
第五章 結論.......................................................57
第六章 參考文獻...................................................58
參考文獻 References
1. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, Appl. Phys. Lett. 100 (2012) 013502.
2. M. Fleischer, H. Meixner, Sens. Actuators B52 (1998) 179
3. D. Wang, Y. Lou, R. Wang, P. Wang, X. Zheng, Y. Zhang , and N. Jiang, Ceram. Int. 41 (2015) 14790.
4. X. C. Guo, N.H. Hao, D.Y. Guo, Z.P. Wu, Y. H. An, X. L. Chu , L. H. Li, P. G. Li, M. Lei, and W. H. Tang, J. Alloys Compd. 660 (2016) 136.
5. P. C. Chang, Z. Fan, W. Y. Tseng, A. Rajagopal, and J. G. Lu, Appl. Phys. Lett. 87 (2005) 222102.
6. T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, IEEE J. Sel. Top. Quantum Electron. 20 (2014) 3802006.
7. Z. Li, C.de Groot, J . H. Moodera, Appl. Phys. Lett. 77 (2000) 3630
8. T. C. Wei, D. S. Tsai, P. Ravadgar, J. J. Ke, M. L. Tsai, D. H. Lien, C. Y. Huang, R. H. Horng, and J. H. He, IEEE J. Sel. Top. Quantum Electron. 20 (2014) 3802006.
9. T. Oshima, T. Okuno, N. Arai1, N. Suzuki1, S. Ohira1, and S. Fujita, Appl. Phys. Express 1 (2008) 011202.
10. H. H. Tippins, Phys. Rev. A316 (1965) 140.
11. R. Roy, V. G. Hill, E. F. Osborn, J. Am Chem. Soc. 74 (1952) 719
12. Stefanie A. Hering, ”Synthetic Investigations in Rare-Earth Borates, Gallates, Oxides, and Gallium Oxonitrides at Extreme Conditions”, 2009, pp.106.
13. M. Yamaga, E. G. Villora, K Shimamura, N. Ichinose, Honda, Phys. Rev. B 68 (2003) 155207.
14. J. Åhman, G. Svensson, and J. Albertsson, Acta Cryst. C52 (1996) 1336.
15. L. Binet, D. Gourier, J. Phys. Chem. Solids 59 (1998) 1241
16. J. Hao, M. Cocivera, J. Phys. D: Appl. Phys. 35 (2002) 433
17. Y. P. Song, H. Z. Zhang, C. Lin, Y. W. Zhu, G. H. Li, F. H. Yang, and D. P. Yu,
Phys. Rev. B.69 (2004) 075304.
18. E. Nogales, J. Á. García, B. Méndez, and J. Piqueras, Appl. Phys. Lett. 91 (2007) 133108.
19. E. Nogales, J. Á. García, B. Méndez, and J. Piqueras, J. Appl. Phys. 101 (2007) 033517.
20. L. Binet, and D. Gourier, J. Phys. Chem. Solids 59 (1998) 1241.
21. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee J. Phys. Chem. B.106 (2002) 9536.
22. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, J. Cryst. Growth 378 (2013) 591.
23. W. Zhaoa, Y. Yanga, R. Haoa, F. Liua, Y. Wanga, M. Tana, J. Tanga, D. Rena, and D. Zhao, J. Hazard Mater. 192 (2011) 1548.
24. D. H. Kim, S. H. Yoo, T. M. Chung, K. S. An, H. S. Yoo, and Y. Kim, Bull. Korean Chem. Soc. 23 (2002) 225.
25. K. W. Chang, and J. J. Wu, Adv. Mater. 16 (2004) 545.
26. S. Y. Zhang, H. Z. Zhuang, C. S. Xue, B. Li, J. Shen, and D. Wang, Acta Phys. Pol. A112 (2007) 1195.
27. H. S. Chung, S. C. Kim, D. H. Kim, J. W. Kim, O. J. Kwon, C. Park, and K. H. Oh, J. Korean Phys. Soc. 55 (2009) 68.
28. U. M. Graham, S. Shashank, M. K. Sunkara, and B. H. Davis, Adv. Funct. Mater 13 (2003) 576.
29. M. Marezio, Acta Crystallogr. 18 (1965) 481.
30. J.P. Remeika, A.A. Ballman, Appl. Phys. Lett. 5 (1964) 180.
31. T. Ishii, Y. Tazoh, S. Miyazawa, J. Cryst. Growth, 189/190(1998)208212.
32. S. Nanamatsu, K. Doi, M. Takahashi, Jpn. J. Appl. Phys. 11(1972) 816.
33. H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition, (1999) pp. 12-31
34. 羅吉宗,“薄膜科技與應用”,2005,pp.425-427。
35. V. E. Bauer, Phanomenologische theorie der kristallabscheidung an oberflachen. I , Zeitschrift fur Kristallographie , Bd. 110, pp. 372-394 (1958) .
36. J. A. Venables, GDT Spiller and M Hanbucken, Nucleation and growth of thin film, Reports on Progress in Physics, Vol.47 , pp.399-459(1984).
37. J. E. Ayers, “Heteroepitaxy of semiconductor.”, CRC Press, (2006)
38. M. Ohring, “The Materials Science of Thin Films”, 2nd edition, Academic Press (2002)
39. P. M. Martin, ed., “Handbook of Deposition Technologies for Films andCoatings 3rd edition, Elsevier (2010)
40. 鄭介瑜,“利用化學汽相沉積法在(100)γ-LiAl2O3(LAO)基板上成長氧化鎵”,國立中山大學材料與光電科學學系碩士論文 (2014年)。
41. T. Harwig, F. Kellendonk, “Some observations on the photoluminescence of doped β-galliumsesquioxide”, Solid Sate Chemistry,Vol. 24, pp. 255-263(1978).
42. V. I. Vasiltsiv, Y. M. Zakharko, and Y. I. Prim, “On the nature of blue and green luminescence bands of beta- Ga2O3”, Ukrayins’kyi Fizychnyi Zhurnal, Vol. 33, pp. 1320(1988)
43. T. Harwig, F. Kellendonk, and S. Slappendel, J. Phys. Chem. Solids, 39 (1978) 675.
44. G. Bailey and G.C. Wood, “The Morphology of Anodic Films Formed on Aluminum in Oxalic Acid”, Trans. Inst. Metal. Finish. 52(1974), pp. 187
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code