Responsive image
博碩士論文 etd-0626117-133627 詳細資訊
Title page for etd-0626117-133627
論文名稱
Title
電流源超音波驅動器設計
Current-Source Driving Circuit for Ultrasonic Transducer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-18
繳交日期
Date of Submission
2017-07-26
關鍵字
Keywords
反共振、超音波換能器、LQR控制、換流器、FPGA、電流源降壓式電源轉換器、功率控制
anti-resonant, inverter, current source buck converter, LQR control, FPGA, power control, ultrasonic transducer
統計
Statistics
本論文已被瀏覽 5711 次,被下載 243
The thesis/dissertation has been browsed 5711 times, has been downloaded 243 times.
中文摘要
本論文為設計電流源的降壓式電源轉換器並結合D類的全橋換流器,應用於超音波噴塗換能器反共振驅動上。以實際量測的方式,比較換能器在驅動共振點與反共振點上的熱消耗損失與振動量之間的差異,最後結果顯示反共振點較為節能。為了能抵抗換能器阻抗的劇烈變動,提出基於LQR控制器架構的電流源降壓式轉換器設計,不僅架構簡單,相較於以往的電壓源設計能減少更多線路上的損失。藉由電源轉換器提供可調式的電流源給全橋換流器產生切換訊號來進行換能器的驅動,並藉由驅動訊號來調節功率的輸出。其中本文的控制器以Altera所出產的FPGA,EP4CE6E22C8N搭配週邊的電路設計做驅動器實現。
Abstract
This thesis presents a current-source driving circuit for an ultrasonic transducer, intended for driving the transducer in its anti-resonance for reducing thermal loss. The driving circuit is mainly composed of a buck converter that generates a constant output current, a full-bridge two-level inverter that converts the dc current into ac current, and a step-up transformer. The current regulation of the buck converter is optimally designed using the LQR method, and its output current is adjustable according to the transducer's desired driving power. The control algorithm is implemented on the Altera FPGA EP4CE6E22C8N. The experiment confirms that the proposed anti-resonance driving circuit indeed results in less thermal loss in the transducer.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘要 iii
Abstract iv
目錄 v
圖目錄 viii
表目錄 xiv
第一章 超音波換能器驅動方法 1
1.1 超音波驅動方法回顧 1
1.2 反共振點驅動所遇到的困難 5
1.3 解決辦法與設計理念 6
第二章 超音波換能器特性 8
2.1 超音波換能器阻抗特性 8
2.2 超音波換能器電路模型建立與模擬 10
第三章 電流源降壓式電源轉換器與控制器設計 13
3.1 降壓式電源轉換器 13
3.1.1 電源轉換器 13
3.1.2 降壓式電源轉換器動作解析 14
3.1.3 建立降壓式電源轉換器數學模型 18
3.1.4 降壓式電源轉換器模擬 19
3.2 LQR控制器設計 27
3.2.1 LQR控制理論 27
3.2.2 LQR控制用於電流源降壓式電源轉換器 30
3.2.3 LQR電流源降壓式電源轉換器模擬 35
3.3 功率控制設計 36
第四章 全橋換流電路與補償電路設計 38
4.1 全橋換流器驅動電路設計 38
4.2 補償電路設計與模擬 41
第五章 電路整合與程式規劃 49
5.1 電路整合 49
5.1.1 電源電路設計 49
5.1.2 感測電路設計 51
5.2 FPGA控制器實現 55
5.2.1 程式執行流程圖 55
5.2.2 程式各部分位元數的決定 57
5.2.3 數位控制器方塊圖與模擬 57
第六章 模擬驗證與量測結果 62
第七章 結論與待改善的問題 68
參考文獻 69
附錄A 電路佈局 74
附錄B 被動元件的不理想特性說明 75
B.1電阻 75
B.2電容 75
B.3電感 76
B.4變壓器 78
附錄C 主動元件的不理想特性說明 84
參考文獻 References
[1] 鄭振東,超音波工程,全華科技圖書股份有限公司,1999年。
[2] J. Riemer, Ultrasonic spray coating of nanoparticles, Sono-Tek Corporation, 2011.
[3] 江紀賢,利用超音波霧化噴塗法生長氧化矽薄膜,清華大學工程與系統科學系研究所學位論文,2012年。
[4] X. Dong, T. Yuan, M. Hu, H. Shekhani, Y. Maida, T. Tou, and K. Uchino, “Driving frequency optimization of a piezoelectric transducer and the power supply development,” Review of Scientific Instruments, vol. 87, 105003, 2016.
[5] C. Kauczor, and N. Frohleke, “Inverter topologies for ultrasonic piezoelectric transducers with high mechanical Q-factor,” Proc. 35th IEEE Annual Power Electronics Specialists Conference, vol. 4, pp. 2736-2741, 2004.
[6] W. Littmann, T. Hemsel, C. Kauczor, J. Wallaschek, and M. Sinha, “Load-adaptive phase-controller for resonant driven piezoelectric devices,” Proc. World Congress on Ultrasonics, Paris, vol. 48, pp. 547-550, 2003.
[7] T. Schulte, N. Fröhleke, and C. Kauczor, Resonant power converter for ultrasonic piezoelectric converter, MPInterconsulting Corporation, 2002.
[8] C. Volosencu, “Control system for ultrasonic welding devices,” IEEE International Conference on Automation Quality and Testing Robotics, vol. 2, pp. 135-140, 2008.
[9] Y. Wang, M. J. Draper, S. M. Denley, F. V. P. Robinson, and P. R. hepherd, “Control scheme evaluation for class-D amplifiers in a power-ultrasonic system,” Proc. 6th IET International Conference on Power Electronics, Machines and Drives, pp. 1-6, 2012.
[10] 余祥華、賴姵穎、謝逸飛,適用不同阻抗特性之功率可調超音波驅動器開發期末報告,經濟部,2014年。
[11] V. Babitsky, V. Astashev, and A. Kalashnikov, “Autoresonant control of nonlinear mode in ultrasonic transducer for machining applications,” ELSEVIER Journal of Ultrasonics, vol. 42, pp. 29-35, 2004.
[12] S. Voronina and V. Babitsky, “Autoresonant control strategies of loaded ultrasonic transducer for machining applications,” ELSEVIER Journal of Sound and Vibration, vol. 313, pp. 395-417, 2008.
[13] 陳奕伶,超音波換能器之切換迴授鎖頻驅動設計,中山大學電機工程學系研究所學位論文,2016年。
[14] J. Aldrich, S. Sherrit, X. Bao, Y. Bar-Cohen, M. Badescu, and Z. Chang, “Extremum-seeking control for an ultrasonic/sonic driller/corer (USDC) driven at high power,” Proc. of SPIE. Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, vol. 6166, 616618, 2006.
[15] B. Mortimer, T. Du Bruyn, J. Davies, and J. Tapson, “High power resonant tracking amplifier using admittance locking,” ELSEVIER Journal of Ultrasonics, vol. 39, pp. 257-261, 2001.
[16] L. J. Smith, “Use of phase-locked-loop control for driving ultrasonic transducers,” NASA Lewis Research Center, Cleveland,United States, 1966.
[17] S. H. Yu, Y. F. Hsieh, P. Y. Lai, Y. L. Chen, C. P. Yang, and K. Lin, “FPGA-based resonant-frequency-tracking power amplifier for ultrasonic transducer,” Proc. International Conference on Applied Electronics, pp. 285-288, 2015.
[18] 賴姵穎,利用 FPGA 實現鎖相迴路鎖頻演算法於超音波噴塗系統,中山大學電機工程學系研究所學位論文,2016年。
[19] M. Ahmed, M. Kuisma, K. Tolsa, and P. Silventoinen, “Implementing sliding mode control for buck converter,” Proc. 34th IEEE Power Electronics Specialist Conference, vol. 2, pp. 634-637, 2003.
[20] S. C. Tan, Y. M. Lai, M. K. Cheung, and C. K. Tse, “On the practical design of a sliding mode voltage controlled buck converter,” IEEE Transactions on Power Electronics, vol. 20, pp. 425-437, 2005.
[21] S. Emami, M. B. Poudeh, and S. Eshtehardiha, “Particle swarm optimization for improved performance of PID controller on buck converter,” Proc. IEEE International Conference on Mechatronics and Automation, pp. 520-524, 2008.
[22] L. Guo, J. Y. Hung, and R. Nelms, “PID controller modifications to improve steady-state performance of digital controllers for buck and boost converters,” Proc. 17th Annual IEEE Conference and Exposition on Applied Power Electronics, vol. 1, pp. 381-388, 2002.
[23] R. B. Ridley, “A new continuous-time model for current-mode control,” IEEE Transactions on Power Electronics, vol. 6, pp. 271-280, 1991.
[24] H. Y. Wu, X. M. Yuan, J. F. Zhang, and W. X. Lin, “Single phase unity power factor current-source rectification with buck-type input,” Proc. 27th Annual IEEE Conference on Power Electronics Specialists, vol. 2, pp. 1149-1154, 1996.
[25] J. Yang, W. Zhang, F. Al-Naemi, and X. Chen, “A single phase current source PFC converter based on UC3854,” Journal of Power and Energy Engineering, vol. 5, pp. 857-863, 2013.
[26] J. Hu, L. Shang, Y. He, and Z. Q. Zhu, “Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach,” IEEE Transactions on Power Electronics, vol. 26, pp. 210-222, 2011.
[27] L. Xu, D. Zhi, and L. Yao, “Direct power control of grid connected voltage source converters,” Proc. IEEE Power Engineering Society General Meeting, pp. 1-6, 2007.
[28] S. Hirose, M. Aoyagi, Y. Tomikawa, S. Takahashi, and K. Uchino, “High power characteristics at anti-resonance frequency of piezoelectric transducers,” ELSEVIER Journal of Ultrasonics, vol. 34, pp. 213-217, 1996.
[29] R. P. Paganelli, A. Romani, A. Golfarelli, M. Magi, E. Sangiorgi, and M. Tartagni, “Modeling and characterization of piezoelectric transducers by means of scattering parameters. Part I: Theory,” ELSEVIER Journal of Sensors and Actuators A: Physical, vol. 160, pp. 9-18, 2010.
[30] S. O. Ural, S. Tuncdemir, Y. Zhuang, and K. Uchino, “Development of a high power piezoelectric characterization system and its application for resonance/anti-resonance mode characterization,” Japanese Journal of Applied Physics, vol. 48, 056509, 2009.
[31] 溫富亮、林修正、許益健、何智遠,“藍杰文振動子共振腔體設計與動態行為之研究”,第十三屆中華民國振動與噪音工程學術研討會論文集,pp. 466-473,2005年。
[32] 白富升、黃慶連、林家宏、薛儒鴻,“壓電陶瓷共振系統之設計與實現”,第31屆電力工程研討會,pp. 2160-2164,2010年。
[33] M. Prokic, Piezoelectric transducers modelling and characterization, MP Interconsulting Corporation, 2004.
[34] 曾明鴻,順滑模態量化控制理論:應用於 D 類放大器與同步降壓式轉換器之控制器設計,中山大學電機工程學系研究所學位論文,2006年。
[35] 劉禮文,具快速響應之功因修正控制器設計,中山大學電機工程學系研究所學位論文,2014年。
[36] 田民波,磁性材料,清華大學出版社有限公司,2001年。
[37] 吳義利,切換式電源轉換器原理與實用設計技術,文笙書局,2015年。
[38] 趙志英、龔春英、秦海鴻, “高頻變壓器分布電容的影響因素分析” ,中國電機工程學報,vol. 28,pp. 55-60,2008年。
[39] 曾光、金舜、史明, “高頻變壓器分布電容的分析與處理” ,電力電子技術,vol. 36,pp. 54-57,2002年。
[40] 劉春山、張永農、陳彥豪,“高頻高壓變壓器等效電路量測分析與應用”,第31屆電力工程研討會,pp. 1076-1082,2010年。
[41] Application note, “Design and application guide of a bootstrap circuit for high-voltage gate-drive ic,” ON Semiconductor Corporation, 2008.
[42] Application note, “Designing multiple output flyback power supplies with TOPSwitch application,” Power Integrations Corporation, 1998.
[43] S. H. Yu, “Analysis and design of single-bit sigma-delta modulators using thetheory of sliding modes,” IEEE Transactions on Control Systems Technology, vol. 14, pp. 336-345, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code