Responsive image
博碩士論文 etd-0626117-155909 詳細資訊
Title page for etd-0626117-155909
論文名稱
Title
穩定三維非立方晶形液態光子晶體之研究
Study of stable 3D non-cubic liquid photonic crystal
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-25
繳交日期
Date of Submission
2017-08-17
關鍵字
Keywords
藍相液晶、光子晶體、非立方晶形晶體結構、反覆電場、缺陷線重組
alternative electric field, non-cubic lattice structure, photonic crystal, blue phase liquid crystal, reconstruction of disclination
統計
Statistics
本論文已被瀏覽 5746 次,被下載 15
The thesis/dissertation has been browsed 5746 times, has been downloaded 15 times.
中文摘要
藍相液晶為一種三維光子晶體結構,在於光子晶體發展上其被視為極具潛力之材料。一般而言,藍相液晶之晶體結構對於藍相一與藍相二分別為體心立方晶體與簡單立方晶體。非立方晶形之藍相液晶可藉由對其施加電場所形成,然而在移除電場後其即回復至原本的立方晶體之結構,如此使得藍相液晶之發展備受限制,而本研究提出一方法可成功引致不需外場協助亦可穩定存在的非立方晶形藍相液晶。在沿著[110]晶軸方向上反覆施加電場於藍相液晶後,其晶體結構逐漸由原本的立方體結構轉變為非立方結構,且不會有扭曲晶體回復的情況發生。此外,我們詳細地探討如何反覆施加電場之方式引致非立方晶形之晶體結構,同時討論不同缺陷線之組成在於引致非立方晶形所帶來的影響,這些結果亦符合我們所提出之假設。因此我們成功無需外場亦可存在的非立方晶形之光子晶體,建立於此研究結果之上,期望可開啟更多光學與光電子學相關之發展。
Abstract
Blue phase is a three-dimensional photonic crystal, and is considered as a promising material for Photonics. Generally, the lattice structures of blue phase are body-centered cubic and simple cubic for BPI and BPII, respectively. In addition, the non-cubic blue phase exists only under the electric field, and it restores to the cubic blue phase upon removal of the external field. Thus, the development of blue phase is limited by this constraint. In this research, we successfully propose a method to induce the stable distorted BPLC, without the assistance of the electric field. After applying the alternative electric field by several times on [110]-oriented BPI, we find the blue phase transform to distorted BPLC without the occurrence of the restoration due to the reconstruction of configuration. Furthermore, we investigate how to utilize an electrical treatment to induce stable distorted BPLC in detail. The influence of the configuration of disclination on the inducement of stable distorted structure is also discussed. The result is coincided with our proposed model. Therefore, we expect these results can encourage the development of photonic crystals.
目次 Table of Contents
摘要 i
Abstract ii
List of figures vi
List of tables ix
Chapter.1 Preface 1
Chapter.2 Introduction 4
2.1 Introduction of liquid crystal 4
2.1.1 Origin and brief history 4
2.1.2 Classification 5
2.1.3 Thermotropic liquid crystal 6
2.1.3.1 Nematic phase 7
2.1.3.2 Smectic phase 8
2.1.3.3 Cholesteric phase 9
2.1.4 Related properties 11
2.1.4.1 Birefringence 11
2.1.4.2 Dielectric anisotropy 14
2.1.4.3 Elastic constant 16
2.1.4.4 Viscosity 17
2.2 Blue phase liquid crystal 19
2.2.1 Basic introduction 19
2.2.2 Lattice orientation and Miller index 21
2.2.3 Selective Bragg reflection 22
2.2.4 Identification of blue phases 24
2.2.4.1 Polarized optical microscopy (POM) 24
2.2.4.2 Reflection spectrum 25
2.2.4.3 Kossel diagram 27
2.2.5 Response of blue phases under electric fields 29
2.3Introduction of non-cubic blue phase liquid crystal 35
2.3.1 Introduction of photonic crystal 35
2.3.2 Fabrication of photonic crystal 37
2.3.3 Non-cubic photonic crystal 39
2.3.4 Electric field induced lattice transformation of blue phases 40
2.3.5 Introduction of BPX 42
2.3.6 Proposed method and scope 44
Chapter.3 Materials and experiment 48
3.1 Materials and precursors 48
3.1.1 Host liquid crystal 49
3.1.2 Chiral dopant 49
3.1.3 Monomers 50
3.2 Fabrication of cells 51
3.2.1 Preparation of substrates 51
3.2.2 Process of homogeneous alignment layers 52
3.2.3 Fabrication of samples of blue phases 53
3.3 Experiment 53
Chapter.4 Results and discussion 55
4.1 Inducement of stable distorted BPLCs 55
4.1.1 Phase sequence of a monomer-doped BPLC 55
4.1.2 Response of a monomer-doped BPLC under an electric field 57
4.1.3 Electrical treatment on a monomer-doped BPLC 58
4.2 Evidence of non-cubic BPLC 60
4.3 How to utilize an electrical treatment 62
4.3.1 Influence of different durations of an electrical treatment 62
4.3.2 Influence of different cycles of an electrical treatment 63
4.4 Influence of lattice structures’ difference 66
4.4.1 Electrical treatment on BPI at different temperatures 66
4.4.2 Electrical treatment on BPII at different temperatures 68
4.5 Field-dependence modulation 70
4.6 Material: Assist to stable distorted structure 72
4.6.1 Failure of inducing stable distorted structures in pristine BPLCs 72
4.6.2 Evidence of thermal effect 75
4.6.3 Electrical treatment on monomer-doped BPLC of different ratios 76
Chapter.5 Conclusion and prospect 80
5.1 Conclusion 80
5.2 Prospect 81
Reference 82
參考文獻 References
[1] McColl, James R., and C. S. Shih. "Temperature dependence of orientational order in a nematic liquid crystal at constant molar volume," Physical Review Letters 29.2 (1972): 85.
[2] Lee, S. H., S. L. Lee, and H. Y. Kim. "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Applied physics letters 73.20 (1998): 2881-2883.
[3] Brochard, F., P. Pieranski, and E. Guyon. "Dynamics of the orientation of a nematic-liquid-crystal film in a variable magnetic field," Physical Review Letters 28.26 (1972): 1681.
[4] Ikeda, Tomiki, and Osamu Tsutsumi. "Optical switching and image storage by means of azobenzene liquid-crystal films," Science 268.5219 (1995): 1873.
[5] Woltman, Scott J., Gregory D. Jay, and Gregory P. Crawford. "Liquid-crystal materials find a new order in biomedical applications." Nature materials 6.12 (2007): 929-938.
[6] Ren, Hongwen, et al. "Tunable-focus flat liquid crystal spherical lens." Applied physics letters 84.23 (2004): 4789-4791.
[7] Khoo, C., H. Li, and Yu Liang. "Observation of orientational photorefractive effects in nematic liquid crystals." Optics letters 19.21 (1994): 1723-1725.
[8] Tondiglia, Vincent P., et al. "Holographic Formation of Electro‐Optical Polymer–Liquid Crystal Photonic Crystals." Advanced Materials 14.3 (2002): 187-191.
[9] J. W. Goodby, P. J. Colings, T. Kato, C. Tschierske, H. F. Gleeson, P. Raynes, “Handbook of Liquid Crystals” Volume 3, Chapter 15
[10] Kozawaguchi, Haruki, and Masanobu Wada. "Helical Twisting Power in Cholesteric Liquid Crystal Mixtures. I. Experimental Results," Japanese Journal of Applied Physics 14.5 (1975): 651.
[11] Fergason, James L. "Cholesteric structure-1 optical properties." Molecular Crystals and Liquid Crystals 1.2 (1966): 293-307.
[12] de Vries, Hill. "Rotatory power and other optical properties of certain liquid crystals." Acta Crystallographica 4.3 (1951): 219-226.
[13] Prost, J. The physics of liquid crystals. No. 83. Oxford university press, 1995.
[14] G. Nordendorf, A. Hoischen, J. Schmidtke, D. Wilkes, and H.-S. Kitzerow, “Polymer-stabilized blue phases: promising mesophases for a new generation of liquid crystal displays,” Polym. Adv. Technol. (2014)
[15] Kikuchi, Hirotsugu, et al. "Polymer-stabilized liquid crystal blue phases." Nature materials 1.1 (2002): 64-68.
[16] Lin, Tsung-Hsien, Chun-Wei Chen, and Quan Li. "Self-Organized 3D Photonic Superstructure: Blue Phase Liquid Crystal." Anisotropic Nanomaterials. Springer International Publishing, 2015. 337-378.
[17] Chen, Chun-Wei, et al. "Temperature dependence of refractive index in blue phase liquid crystals," Optical Materials Express 3.5 (2013): 527-532.
[18] Miller, Richard J., and Helen F. Gleeson. "Order parameter measurements from the Kossel diagrams of the liquid-crystal blue phases," Physical Review E 52.5 (1995): 5011.
[19] Kawata, Yuto, et al. "Anisotropy of the electro-optic Kerr effect in polymer-stabilized blue phases," Physical Review E 91.2 (2015): 022503.
[20] Yan, Jin, and Shin-Tson Wu. "Polymer-stabilized blue phase liquid crystals: a tutorial [Invited]." Optical Materials Express 1.8 (2011): 1527-1535.
[21] Chen, Hui-Yu, Ji-Yi Chiou, and Kai-Xian Yang. "Reversible and fast shift in reflection band of a cubic blue phase in a vertical electric field." Applied Physics Letters 99.18 (2011): 181119.
[22] H.-S. Kitzerow, "The effect of electric fields on blue phases," Molecular crystals and liquid crystals 202, 51-83 (1991).
[23] Alexander, G. P., and D. Marenduzzo. "Cubic blue phases in electric fields," EPL (Europhysics Letters) 81.6 (2008): 66004.
[24] Yablonovitch, Eli. "Inhibited spontaneous emission in solid-state physics and electronics," Physical review letters 58.20 (1987): 2059.
[25] John, Sajeev. "Strong localization of photons in certain disorderly dielectric superlattices," Physical review letters 58.23 (1987): 2486.
[26] Joannopoulos, John D., Pierre R. Villeneuve, and Shanhui Fan. "Photonic crystals: putting a new twist on light." Nature 386.6621 (1997): 143.
[27] Akahane, Yoshihiro, et al. "High-Q photonic nanocavity in a two-dimensional photonic crystal." nature 425.6961 (2003): 944-947.
[28] Baba, Toshihiko, Naoyuki Fukaya, and Jun Yonekura. "Observation of light propagation in photonic crystal optical waveguides with bends," Electronics letters 35.8 (1999): 654-655.
[29] Fan, Shanhui, et al. "Channel drop filters in photonic crystals." Optics express 3.1 (1998): 4-11.
[30] Yamamoto, Noritsugu, Susumu Noda, and Akio Sasaki. "New realization method for three-dimensional photonic crystal in the optical wavelength region: experimental consideration," Japanese journal of applied physics 36.3S (1997): 1907.
[31] Lin, Yuankun, David Rivera, and Kevin P. Chen. "Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques," Optics express 14.2 (2006): 887-892.
[32] Holland, Brian T., Christopher F. Blanford, and Andreas Stein. "Synthesis of macroporous minerals with highly orderly three-dimensional arrays of spheroidal voids," Science 281.5376 (1998): 538-540.
[33] Tao, R., and D. Xiao. "Three-dimensional dielectric photonic crystals of body-centered-tetragonal lattice structure," Applied physics letters 80.25 (2002): 4702-4704.
[34] Lin, Yuankun, David Rivera, and Kevin P. Chen. "Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques." Optics express 14.2 (2006): 887-892.
[35] Yoshida, Hiroyuki, et al. "Electro-optics of cubic and tetragonal blue phase liquid crystals investigated by two-beam interference microscopy." Applied Physics Express 6.6 (2013): 062603.
[36] Pieranski, P., and P. E. Cladis. "Field-induced tetragonal blue phase (BPX)." Physical Review A 35.1 (1987): 355.
[37] Tiribocchi, A., et al. "Switching dynamics in cholesteric blue phases." Soft Matter 7.7 (2011): 3295-3306.
[38] Hiroyuki Yoshida, Shuhei Yabu, Hiroki Tone, Yuto Kawata, Hirotsugu Kikuchi, and Masanori Ozaki, “Secondary electro-optic effect in liquid crystalline cholesteric blue phases,” Optical Material Express 960, Vol. 4, No. 5(2014)
[39] Chen, Po-Ju, et al. "Influence of alignment layers on crystal growth of polymer-stabilized blue phase liquid crystals." Optical Materials Express 6.4 (2016): 1003-1010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code