Responsive image
博碩士論文 etd-0626117-211001 詳細資訊
Title page for etd-0626117-211001
論文名稱
Title
新型無線網路視訊傳輸使用方塊補償分散式視訊編碼
New Wireless Video Transmission Network with Padding Block Based Distributed Video Coding
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-21
繳交日期
Date of Submission
2017-07-26
關鍵字
Keywords
數位視訊轉碼、解碼友善編碼設計、WZ視訊編碼、分散式視訊編碼、輕型視訊編碼
Distributed Video Coding, Light-Weight Video Coding, Wyner-Ziv Video Coding, Decoding-Friendly Encoder Design, Digital Video Transcoding
統計
Statistics
本論文已被瀏覽 5702 次,被下載 440
The thesis/dissertation has been browsed 5702 times, has been downloaded 440 times.
中文摘要
本論文首先提出了一項新型的方塊補償型分散式視訊編碼(Padding Block Based Distributed Video Coding; PB Based DVC)技術。以此為基礎我們也提出了新型的無線視訊傳輸網路架構; 它結合了我們先前提出的方塊補償型分散式視訊編碼、數位視訊轉碼(DVT)和友好解碼編碼器的設計(DFED)三項設計於一身。此項新網路設計的優點,可以產生較低複雜度的視訊編碼器(因為使用DVC於上載端)與解碼器(因為使用DFED於下載端),並將視訊處理的複雜度移至網路端,同時卻不會增加太多視訊轉換成本(因為使用DVT於網路端)。當然,我們提出的方塊補償型分散式視訊編碼器與傳統DVC相較之下,有較低的運算複雜度(CC)和硬體的成本。事實上,我們的DVC在編碼端使用SAD和DC對每一方塊作分類,並且捨棄一些方塊;且在解碼端將方塊與像素補償還原回來。因此,我們提出的新的視訊網路可以將運算複雜度,從終端的可攜設備轉移到固定的網路端,這樣一來我們便能降低終端的可攜設備的成本。最後,由模擬結果可知,在上載端我們提出的方塊補償型分散式視訊編碼(PB Based DVC)在效能上優於傳統的DVC。
Abstract
In this thesis we first present a novel Padding Block Based Distributed Video Coding (PB Based DVC) paradigm. Based on this new DVC coding technique, we then propose a new wireless video transmission network architecture, which combines our proposed Padding Block Based Distributed Video Coding, Digital Video Transcoding (DVT) and Decoding-Friendly Encoder Design (DFED). In this new proposed video transmission network, the DVT is worked directly with the DFED, which is quite different from the conventional DVT, and the DFED is known to have the advantage of simple and efficient decoder. Also, our proposed Padding Block Based DVC solution requires lower computational complexity (CC) and hardware cost at the encoder side, compared with the conventional DVC schemes. In fact, it uses pad blocks and pixels at decoder from reference frame for those skipped blocks at encoder with sum of absolute differences (SAD) and DC classification. Hence, with the new proposed video network configuration, we could further shift the CC from the portable device to the network side, and this enables us to lower the cost of portable device. The experimental results for the uplink path show that the proposed scheme can achieve desired video quality and outperform the conventional DVC schemes for most test video sequences.
目次 Table of Contents
Contents
論文審定書 . ................................................................................................ i
論文公開授權書........................................................................................... ii
中文摘要 ..................................................................................................... iii
英文摘要 ...................................................................................................... iv
圖次 .............................................................................................................. x
表次 ............................................................................................................. xiv

Chapter 1 Introduction ................................................................................... 1
1-1 Distributed Video Coding 2
1-2 Wireless Video Transmission Network 3
1-2-1 Traditional DVC for WVTN
1-2-2 Our Improvement for WVTN
1-3 Outline of the Thesis 5
1-4 Publications 6

Chapter 2 Conventional Video Coding Standards......................................... 9
2-1 H.263 Video Coding 9
2-2 MPEG-4 Video Coding 10
2-3 H.264 Video Coding 12
2-3-1 H.264/AVC Fidelity Range Extensions
2-3-2 H.264/AVC Scalable Video Coding
2-3-3 H.264/AVC Multiview Video Coding

Chapter 3 Conventional Distributed Video Coding........................................ 17
3-1 The Stanford Distributed Video Coding Architecture 18
3-2 The Berkeley "PRISM" Distributed Video Coding Architecture 20
3-3 The European "DISCOVER" Distributed Video Coding 22


Chapter 4 New Padding Block Based Distributed Video Coding Paradigm
.......................................................................................................................... 25
4-1 Introduction 25
4-2 Related Works 28
4-2-1 Boundary Matching Algorithm
4-2-2 Spatial Texture Synthesis
4-3 Proposed Distributed Video Coding Architecture 29
4-3-1 Encoder part
4-3-1-1 Classification
4-3-1-2 Skip and DC fill in
4-3-1-3 Conventional Intraframe Encoder
4-3-1-4 Record Table
4-3-2 Decoder Part
4-3-2-1 Zero Motion Vector Replacement
4-3-2-2 Partial Boundary Matching Algorithm
4-3-2-3 Spatial Temporal Texture Synthesis
4-3-2-4 Image Inpainting
4-3-2-5 Conventional Intra Frame Decoder
4-3-2-6 Reverse Video Sequence
4-4 Experimental Results 37
4-5 Summery remark 42

Chapter 5 Motion Estimation and Mode Decision at Decoder for Padding Block-based Distributed Video Coding..........................................................43
5-1 Introduction 43
5-2 Background and Methodology 46
5-2-1 Traditional Motion Estimation at encoder in H.264/AVC video coding
5-2-2 Motion estimation at decoder with PBMA
5-2-3 Conventional Mode decision at encoder in H.264/AVC video coding
5-2-4 Mode decision at the decoder with PB-based DVC
5-3 Padding Block-based Distributed Video Coding Scheme 54
5-3-1 Encoder Part
5-3-2 Decoder Part
5-3-3 Enhance function
5-4 Experimental Results 60
5-5 Summery remark 65

Chapter 6 Distributed Video Coding for Wireless Video Transmission Network
.......................................................................................................................... 66
6-1 The Difference of Proposed DVT and Traditional DVT 68
6-2 Padding Block Based Distributed Video Coding Scheme 71
6-3 The Difference of DFED and Traditional Video Coding 75
6-4 Experimental Results 76
6-4-1 The Video test sequences criteria
6-4-2 BMA and STTS Condition (Skip Blocks Coding Condition)
6-4-3 Quantization parameters (QPs), Quantization index (Qi) from DISCOVER codec and Group of Pictures (GOP) Constrains
6-4-4 Comparison with Reference Video Coding Solutions
6-5 Summery remark 86

Chapter 7 Video Coding in a Cloud with Distributed Video Coding and Decoding-Friendly Encoder Design..................................................................... 87
7-1 Introduction 87
7-2 New Proposed Network Architecture with Video Coding in the Cloud 91
7-3 DVC in Uplink 92
7-3-1 Background of Traditional DVCs
7-3-2 Proposed PB Based DVC scheme
7-4 DFED in Downlink 99
7-4-1 DFED motivation
7-4-2 Proposed DFED solutions
7-5 Experimental Results 102
7-5-1 PB Based DVC performance
7-5-2 Sub-pixel motion search simplification performance
7-5-3 UVLC and CABAC entropy coding of DFED performance
7-6 Summery remark 109

Chapter 8 Distributed Video Coding for Combining RFID and Video Surveillance
.......................................................................................................................111
8-1 Introduction 111
8-2 RFID System 113
8-3 Padding Block Based Distributed Video Coding Scheme 115
8-4 Advantages of Our Proposed Distributed Video Coding for RFID System
116
8-5 Experimental Results 117
8-6 Summery remark 120

Chapter 9 Conclusions ..................................................................................122

References .......................................................................................................124
參考文獻 References
References
[1] D. Nguyen, T. Nguyen and X. Yang, Multimedia wireless transmission with network coding, Proc. of Packet Video, Nov. 2007.
[2] J. Slepian and J. Wolf, Noiseless Coding of Correlated Information Sources, IEEE Trans. on Information Theory, Vol. 19, No. 4, July 1973.
[3] A. Wyner and J. Ziv, The Rate-Distortion Function for Source Coding with Side Information at the Decoder, IEEE Trans. on Information Theory, Vol. 22, No. 1, January 1976.
[4] B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero, Distributed video coding, in Proc. IEEE, Vol. 93, No. 1, pp. 71–83, Jan. 2005.
[5] Rohit Puri, Abhik Majumdar and Kannan Ramchandran, PRISM: A Video Coding Paradigm with Motion Estimation at the Decoder, IEEE Transactions on Image Processing, Volume 16, Issue 10, pp. 2436 – 2448, Oct. 2007.
[6] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov and M. Ouaret, The DISCOVER codec: Architecture, techniques and evaluation, Picture Coding Symposium 2007, Lisbon, Portugal, 2007.
[7] C. Brites, J. Ascenso, J. Pedro and F. Pereira, Evaluating a Feedback Channel based Transform Domain Wyner-Ziv Video Codec, Signal Processing: Image Communication, Vol. 23, pp. 269-297, 2008.
[8] Ted Chih-Wei Lei and Shiunn-Jang Chern, Partial Boundary Matching Algorithm and Spatio-Temporal Texture Synthesis in Distributed Video Coding, Fourth International Conference on Innovative Computing, Information and Control, pp. 353-356, Dec. 2009.
[9] Ted Chih-Wei Lei and Shiunn-Jang Chern, New Distributed Video Coding Paradigm with Partial Boundary Matching Algorithm, Spatio-Temporal Texture Synthesis and Image Inpainting, International Journal of Innovative Computing, Information and Control (IJICIC), Vol. 6, No. 12, December 2010.
[10] S. W. Lee and C.-C. J. Kuo, Complexity modeling for motion compensation in H.264/AVC decoder, IEEE Int. Conf. on Image Processing (ICIP), Aug 2007.
[11] S. W. Lee and C.-C. J. Kuo, Motion compensation complexity model for decoder-friendly H.264 system design, IEEE Int. Workshop on Multimedia Signal Processing (MMSP2007), Oct. 2007.
[12] Szu-Wei Lee and C.-C. Jay Kuo, Complexity Modeling of H.264/AVC CAVLC/UVLC Entropy Decoders, IEEE International Symposium on Circuits and Systems, pp. 1616-1619, 2008.
[13] Qi Zhang, Yunyang Dai, Siwei Ma and C.-C. Jay Kuo, Decoder-Friendly Subpel MV Selection for H.264/AVC Video Encoding, International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 655-658, 2006.
[14] Yu Hu, Qing Li, Siwei Ma and C.-C. Jay Kuo, Decoder-Friendly Adaptive Deblocking Filter (DF-ADF) Mode Decision in H.264/AVC, IEEE International Symposium on Circuits and Systems, 2007.
[15] Video coding for low bitrate communication, ITU-T Recommendation H.263 Version 2, 1998.
[16] G. Cote, B. Erol, M. Gallant and F. Kossentini, H.263+: Video Coding at Low Bit Rates, IEEE Transactions on Ciscuits and Systems for Video Technology, vol. 8, no. 7, pp. 849–66, November 1998.
[17] B. Erol, M. Gallant, G. Cote and F. Kossentini, The H.263+ Video Coding Standard: Complexity and Performance, IEEE Data Compression Conference, pp. 259-268, March 1998.
[18] Y. Wang, J. Ostermann and Y. Zhang, Video Processing and Communications, 1st ed. Englewood Cliffs, NJ: Prentice-Hall, 2002.
[19] Iain EG Richardson, H.264 and MPEG-4 Video Compression, John Wiley & Sons, 2003.
[20] Information Technology—Coding of Audio-Visual Objects—Part 10: Advanced Video Coding, ISO/IEC Std 14496-10, 2003.
[21] S.-K. Kwon, A. Tamhankarand and K. R. Rao, Overview of H.264/MPEG-4 part 10, J. Vis. Commun. Image R., Vol. 17, pp. 186-216, April 2006.
[22] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, Overview of the H.264/AVC video coding standard, IEEE Trans. Circuits Syst. Video Technol., Vol. 13, No. 7, pp. 560–576, July 2003.
[23] A. Aaron, R. Zhang and B. Girod, Wyner–Ziv coding of motion video, Conf. Signals and Systems, pp.240-244, 2002.
[24] A. Aaron, S. Rane, R. Zhang and B. Girod, Wyner–Ziv coding for video: applications to compression and error resilience, Proc. IEEE Data Compression Conf., pp. 93–102, 2003
[25] A. Aaron, E. Setton and B. Girod, Toward practical Wyner–Ziv coding of video, IEEE Int. Conf. Image Processing, pp. III-869-72, 2003.
[26] A. Aaron, S. Rane, E. Setton and B. Girod, Transform-domain Wyner–Ziv codec for video, SPIE Visual Communications and Image Processing Conf., 2004.
[27] A. Aaron, S. Rane, and B. Girod, Wyner–Ziv video coding with hash-based motion compensation at the receiver, IEEE Int. Conf. Image Processing, pp. 3097-3100, 2004.
[28] R. Puri and K. Ramchandran, PRISM: a new robust video coding architecture based on distributed compression principles, Allerton Conf. Communication, Control, and Computing, 2002.
[29] R. Puri and K. Ramchandran, PRISM: an uplink-friendly multimedia coding paradigm, Int. Conf. Acoustics, Speech, and Signal Processing, pp.IV-856-9, vol. 4, 2003.
[30] R. Puri and K. Ramchandran, PRISM: A "reversed" multimedia coding paradigm, IEEE Int. Conf. Image Processing, pp. I-617-20, vol. 1, 2003.
[31] R. Puri, A. Majumdar, P. Ishwar and K. Ramchandran, Distributed video coding in wireless sensor networks, IEEE Signal Processing Magazine, Vol. 23, Issue 4, pp. 94–106, July 2006.
[32] Discover, [Online], Available: http://www.discoverdvc.org
[33] J. Zhang, J. F. Arnold and M. R. Frater, A cell-loss concealment technique for MPEG-2 coded video, IEEE Trans. Circuits Syst. Video Technol., Vol. 10, No. 4, June 2000.
[34] T. Chen, Refined boundary matching algorithm for temporal error concealment, Packet Video, 2002.
[35] S. Rane, G. Sapiro, and M. Bertalmio, Structure and texture filling-in of missing image blocks in wireless transmission and compression applications, IEEE Transactions on Image Processing, pp. 296-303, March 2003.
[36] A. A. Efros and T. K. Leung, Texture synthesis by nonparametric sampling, IEEE Int. Conf. Computer Vision, pp. 1033–1038, Sept. 1999.
[37] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, Image Inpainting, Computer Graphics (SIGGRAPH 2000), pp. 417–424, July 2000.
[38] G. Wallace, The JPEG still picture compression standard, IEEE Transactions on Consumer Electronics, Vol. 34, No. 4, pp. 30-44, 1992.
[39] Ted Chih-Wei Lei and Shiunn-Jang Chern, A Low Cost Wireless Video Transmission Network with Padding-based Distributed Video Coding, The 5th IEEE Conference on Industrial Electronics and Applications, pp. 2132-2136, June 2010.
[40] Ted Chih-Wei Lei and Shiunn-Jang Chern, Novel Video Transmission Network with Low Cost H.264/AVC Based Distributed Video Coding, International Journal of Innovative Computing, Information and Control (IJICIC), Vol. 7, No. 10, pp. 5909-5924, October 2011.
[41] I. Ahmad, X. Wei, Y. Sun and Y.-Q. Zhang, Video transcoding: An overview of various techniques and research issues, IEEE Trans. Multimedia, Vol. 7, no. 5, pp. 793–804, Oct. 2005.
[42] N. Bjork and C. Christopoulos, Transcoder architecture for video coding, IEEE Trans. Consumer Electron., Vol. 44, pp. 88–98, Feb. 1998.
[43] B. Shen, I. K. Sethi and B. Vasudev, Adaptive motion-vector resampling for compressed video down scaling, IEEE Trans. Circuits Syst. Video Technol., Vol. 9, No. 6, pp. 929–936, Sep. 1999.
[44] M.-J. Chen, M.-C. Chu and C.-W. Pan, Efficient motion-estimation algorithm for reduced frame-rate video transcoder, IEEE Trans. Circuits Syst. Video Technol., Vol. 12, No. 4, pp. 269–275, Apr. 2002.
[45] E. Peixoto, R. L. Queiroz and D. Mukherjee, Mobile video communications using a Wyner-Ziv transcoder, Proc. SPIE Visual Communication and Image Processing, vol. 2008, January.
[46] J. L. Martinez, G. Fernandez-Escribano, H. Kalva, W.A.C. Fernando and A. Garrido, Wyner-Ziv to H.264 video transcoder for mobile telephony, International Conference on Consumer Electronics 2009, ICCE 2009, PP. 1-2, Jan. 2009.
[47] J. Landt, The history of RFID, IEEE Potentials, Vol. 24, No. 4, pp. 8–11, 2005.
[48] J. Burnell, RFID Triggers Video Surveillance for Freight Tracking, RFID Update 2007, [Online], http://www.rfidupdate.com/articles/index.php?id=1383.
[49] J. Burnell, Nox System Uses RFID to Catch a Thief, RFID Update 2008, [Online], http://www.rfidupdate.com/articles/index.php?id=1573.
[50] P. Brennam, Combining RFID and video surveillance, 2007 International Airport Review, Vol. 11, pp. 38–42, 2007.
[51] P.W.M. Tsang, K.N. Yung, K.H. So and K.W.K. Cheung, A low complexity solution for integrating video surveillance and RFID in remote scene monitoring, Microwave and Optical Technology Letters, Volume 52 Issue 3, pp. 497-783, March 2010.
[52] Nicolas Pillin, Norbert Joehl, Catherine Dehollain and Michel J. Declercq, High Data Rate RFID Tag/Reader Architecture Using Wireless Voltage Regulation, 2008 IEEE International Conference on RFID, pp. 141-149, 2008.
[53] Ted Chih-Wei Lei and Shiunn-Jang Chern, A Low Complexity Video Coding for Combining RFID and Video Surveillance with Padding Based DVC, The 1st International Symposium on Next-Generation Electronics, pp. 215-218, November 2010.
[54] Chieh-Chuan Chiu, Shao-Yi Chien, Chia-han Lee, V.S. Somayazulu, Yen-Kuang Chen, Hybrid distributed video coding with frame level coding mode selection, 2012 19th IEEE International Conference on Image Processing (ICIP), pp. 1561-1564, Oct. 2012.
[55] Chieh-Chuan Chiu, Hsin-Fang Wu, Shao-Yi Chien, Chia-han Lee, V.S. Somayazulu, Yen-Kuang Chen, Hardware architecture design of hybrid distributed video coding with frame level coding mode selection, 2012 Asia-Pacific Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 1-4, Dec. 2012.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code