Responsive image
博碩士論文 etd-0626118-122038 詳細資訊
Title page for etd-0626118-122038
論文名稱
Title
動態負載對DFIG風電場LVRT性能的影響及STATCOM對LVRT增強的最優容量和定位
The Effects of Dynamic Load on the LVRT Performance for DFIG Wind Farms and Optimal Sizing and Location of STATCOM for LVRT Enhancement
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-23
繳交日期
Date of Submission
2018-07-27
關鍵字
Keywords
STATCOM、雙饋風力發電機組、AIAE、PCC、LVRT電網標準、動態負荷、斷開
AIAE, PCC, LVRT grid code, Dynamic loads, Disconnection, DFIG wind turbine, STATCOM
統計
Statistics
本論文已被瀏覽 5733 次,被下載 257
The thesis/dissertation has been browsed 5733 times, has been downloaded 257 times.
中文摘要
風力發電是世界上增長最快的可再生能源。全球尋求更清潔的環境,改進風力渦輪機技術以及政府承諾支持可再生能源發電,導致電力系統中可再生能源的滲透率顯著提高。由於傳統機器在系統中萎縮,高滲透率以及其可再生能源的間歇性,波動性和不可調度性導致動力儲備和系統慣性不足。
電力系統運營商(PSO)制定了專門為可再生能源製定的電網規範,以提供電網連接,穩態和動態操作指南。在這項研究中,考慮了風力渦輪機的低電壓穿越(LVRT)電網規範。 LVRT要求規定,如果故障後電壓恢復到標稱電壓的90%比不同垂度水平的設定時間慢,風電場可能會從電網斷開。在嚴重受限的系統中斷開風力可能是災難性的,需要避免,因為系統具有較少的動力儲備。
電壓恢復受動態負載的影響很大。電力系統負載估計約為60%的動態負載,主要是感應電動機。在該研究中,使用具有馬達子模型的PSS / E CLOD複合載荷模型。通過在戰略位置使用靜態同步補償器(STATCOM)設備進行LVRT增強,可以減少不希望的風電場斷開(WF)。最佳STATCOM容量取決於系統中的實際或預期動態負載比例以及所需的電壓恢復時間。
通過使用電壓偏差的平均積分絕對誤差(AIAE)作為指標來確定STATCOM位置,並確定容量符合德國LVRT電網規範電壓恢復要求。在該研究中,顯示動態變量規劃可以改善風力渦輪機的正常運行時間,整體系統完整性,並且單個策略定位的動態變量源可以服務於幾個相鄰的WF,以降低LVRT增強的成本。
Abstract
Wind power is the fastest growing renewable energy source in the world. The global quest for a cleaner environment, improvement in wind turbine technology and government pledges to support renewable energy generation has resulted in significantly high renewable energy penetration in power systems. The high penetration coupled with its intermittency, fluctuation and non dispatchability of renewable power has resulted in shortage of power reserves and system inertia as conventional machines are shrinking in the system.
Grid codes specially formulated for renewable energy sources have been enacted by power system operators (PSO) to give grid connection, steady state and dynamic operational guidelines. In this study, the low voltage ride through (LVRT) grid code for wind turbines is considered. The LVRT requirement stipulates that if voltage recovery to 90% of nominal voltage following a fault is slower than the set-times at different sag levels, wind farm could disconnect from the grid. Disconnection of wind power in a heavily constrained system can be catastrophic and need to be avoided as the system has less power reserves.
Voltage recovery is greatly affected by dynamic loads. Power systems loads are estimated to be roughly 60% dynamic loads which are mostly induction motors. In this study, a PSS/E CLOD composite load model with motor sub-models are used. Undesired disconnection of wind farms (WF) could be mitigated through LVRT enhancement by static synchronous compensator (STATCOM) device at strategic locations. The optimal STATCOM capacity depends on the actual or anticipated dynamic load proportion in the system and the required voltage recovery time.
STATCOM locations are determined through the use of Average Integral Absolute Error (AIAE) of voltage deviation as indices and the capacity is determined to comply with German LVRT grid code voltage recovery requirement. In the study it is shown that dynamic var planning can improve wind turbine uptime, overall system integrity and that a single strategically located dynamic var source could serve several adjacent WFs to reduce costs of LVRT enhancement.
目次 Table of Contents
Thesis Validation Letter i
Acknowledgement ii
摘要 iii
Abstract iv
Table of Contents v
List of Figures viii
List of Tables x
Abbreviations xi
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 4
1.3 Research Objectives 5
1.4 Contribution of the Study 6
1.5 Thesis Layout 7
Chapter 2 Theoretical Background 8
2.1 Introduction 8
2.2.1 Wind Farm Impact Study 8
2.2.2 Wind Turbine Technologies 12
2.3 WTG Grid Codes 14
2.3.1 LVRT Grid Code 15
2.3.2 LVRT Testing 16
2.3.3 LVRT Test Benchmark 19
2.4 Dynamic Load Models 22
2.4.1 Composite Load Model 24
2.4.2 Complex Load Model 25
2.5 Wind Aggregation Models 27
2.6 Conclusion 29
Chapter 3 System Modeling 30
3.1 Introduction 30
3.2 PSS/E Simulation Package 30
3.3 Wind Farm Aggregation Model 30
3.3.1 Wind Farm Model Validation 32
3.3.2 Conclusion 35
Chapter 4 Effects of Dynamic Load Proportion on Voltage Recovery and LVRT Performance 36
4.1 Introduction 36
4.2 System for Voltage Recovery Simulations 36
4.3 LVRT Tripping Algorithm 39
4.4 Dynamic Load Proportion 40
4.5 Fault Clearing Time 41
4.6 AIAE of Voltage Deviation 42
4.7 Conclusion 43
Chapter 5 Optimal STATCOM Sizing and Location 44
5.1 Introduction 44
5.2 System Dynamic Equations 45
5.3 Optimal STATCOM Sizing and Location 46
STATCOM Dynamic Model 50
5.4 Case Study 51
5.4.1 STATCOM Location 52
5.4.2 Optimal STATCOM Capacity 53
5.4.3 Conclusion 56
Chapter 6 Test Results 58
6.1 Introduction 58
6.2 System Description 58
6.3 STATCOM Location Bus 60
6.4 Optimal STATCOM Capacity 62
6.5 V-Q sensitivities 69
6.6 Discussion 73
Chapter 7 Conclusion and Future work 75
7.1 Conclusion 75
7.2 Future work 76
Chapter 8 REFERENCES 77
Appendix A Wind Farm Design Data 83
Appendix B Test Bus Dynamic PSS/E Data 85
Appendix C Test Bus Raw PSS/E Data 89
Appendix D Augmented IEEE24 RTS PSS/E Raw Data 95
Appendix E Augmented IEEE24 RTS PSS/E Dynamic Data 102
參考文獻 References
[1] GWEC, Global Wind Report Annual Market Update 2014, GWEC 2014 available at: http://www.gwec.net/wpcontent/uploads/2015/03/GWECGlobalWind2014ReportLR.pdf
[2] GWEC, Global Wind Energy Outlook 2016, GWEC 2016 available at
http://gwec.net/publications/global-wind-energy-outlook/global-wind-energy-outlook 2016/
[3] GWEC, Global Wind Energy Outlook 2014, GWEC 2014 available at
https://www.gwec.net/wp-content/uploads/2014/10/GWEO2014_WEB.pdf
[4] GWEC, Global Wind Report, Annual Market Update 2016 available at
http://files.gwec.net/files/GWR2016.pdf
[5] R. C. Dugan, M. F. Granaghan. “Electrical Power Systems Quality”, 2nd Ed, 2004. McGraw-Hill Companies, USA.
[6] M. Ragheb (2017), Modern Wind Generators, available at http://mragheb.com/NPRE 475 Wind Power Systems/Modern Wind Generators.pdf
[7] L. F. W. Souza, T. M. L. Assis, and I. F. Visconti, "On the Assessment of Voltage Ride-Through Needs of the Power Transmission Grid," in Proc. 2010 iREP Symposium on Bulk Power System Dynamics and Control (iREP), pp. 1-10
[8] N. Espinoza, M. Bongiorno and O. Carlson, “Grid Code Testing of Full Power Converter Based Wind Turbines Using Back-to-Back Voltage Source Converter System” available at http://publications.lib.chalmers.se/records/fulltext/174669/local_174669.pdf
[9] J. D. Rose, I. A. Hiskens, “Challenges of Integrating Large Amount of Wind Power”, 2007 1st Annual IEEE Systems Conference, 2007.
[10] Siemens Energy Inc., “PSS/E Models for Dynamic Simulation of Composite Loads”, Power Technology, Issue 106. August 2010.
[11] WECC Modeling Group, “Composite load Model for Dynamic Simulations – Report 1.0, June 12, 2012. Salt Lake City, UT. Available at https://www.wecc.biz/Reliability/WECC MVWG Load Model Report ver 1 0.pdf
[12] M. Gordon, "Impact of load behavior on transient stability and power transfer limitations," 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, 2009, pp.1-8. DOI: 10.1109/PES.2009.5275908
[13] M. H. J. Bollen. “Understanding Power Quality: Voltage Sag and Interruptions”, John Wiley and Sons Inc., Hoboken, New Jersey, 2010.
[14] SLR and Horse Lea Acoustics (2015). “Wind Farm Impacts Study, Review of the Visual, Shadow flicker and Noise impacts of onshore wind farms”, Final Report, July 2015. SLR Ref: 405.04528.00001. Available at: https://www.climatexchange.org.uk/media/1426/final_report_wind_farm_impacts_study_july_2015_issue.pdf [Retrieved June 06, 2018]
[15] Bloomberg New Energy Finance, “Clean Energy Is Approaching a Tipping Point”, Available at: https://www.bloomberg.com/news/articles/2017-09-19/tipping-point-seen-for-clean-energy-as-monster-turbines-arrive[Retrieved July 23, 2018]
[16] IEEE Power & Energy Society, “Contribution to Bulk System Control and Stability by Distributed Energy Resources Connected at Distribution Networks”. PES- TR22, Technical Report, Jan 2017.
[17] Interstate Renewable Energy Council (IREC), “Connecting to the Grid: A Guide to Distributed Interconnection Issues”, 6th Ed. 2009.
[18] IEEE Guide for Conducting Distribution Impact Studies for Distributed Resource Interconnection, “in IEEE STD 1547.7-2013”, vol., no., pp.1-137, Feb. 28 2014
DOI: 10.1109/IEEESTD.2014.6748837
[19] P. Sebastian and U. Nair, “Improved low Voltage Ride through Capability of a Fixed Speed Wind Generator Using Dynamic Voltage Restorer”, Procedia Technology 25(2016) 767-774, Elsevier Ltd.
[20] WECC Modeling and Validating Work Group, “WECC Wind Power Plant Dynamic Modeling Guide”, April, 2014. Available at http://www.wecc.biz/committees/StandingCommittees/PCC/TSS/MVWG/Shared Documents/MVWG Approved Documents/WECC Wind Plant Dynamic Modeling Guidelines.pdf
[21] M. Giraneza, M. Tariq and E. Kahn. “Comparative Evaluation between Direct Connected and VSC-HVDC Grid Connected Wind Farm”, Journal of Energy Technology and Policy. Vol 4, No. 12, 2014. ISSN 2225-0573
[22] C. Sourkounis. P. Tourou. “Grid Code Requirements for Wind Power Integration in Europe”, Conference Paper on Energy, Vol 2013, Hindawi Publishing Corporation. Available at http://dx.doi.org/10.1155/2013/437674
[23] D. W. Gao, E. Muljadi, T. Tian, M. Miller and W. Wang “Comparison of Standards and Technical Requirements of Grid-Connected Wind Power Plants in China and United States”, National Renewable Energy Laboratory (NREL),Technical Report NREL/TP-5D00-64225, 2015.
[24] IEC 61400-1: Wind Turbines – Part 1: Design Requirements, 3rd Ed, 2005.
[25] Norbert Essl. Herwig Renner. “Influence of LVRT Test Equipment Characteristics on the Dynamic Performance of a Power Generation Unit.” 23rd International Conference on Power Distribution, Paper 1133, Lyon 15th -18th June 2015.
[26] ENTSO-E, Entso-e network code for requirements for grid connection applicable to all generators. Technical report. 2013 http://networkcodes.entsoe.eu/
[27] DEWI Magazine, No. 43, 2008. LVRT – Low Voltage Ride- Through
[28] A. Etxegarai1, E. Torres, I. Zamora, J.I. San Martin, and P. Eguia, “Review of Procedures for Verification of Grid Code Compliance of Renewable Generation”, International Conference on Renewable Energies and Power Quality (ICREPQ’14)
Cordoba (Spain), 8th to 10th April, 2014
[29] Siemens Energy Inc. “Proposed Dynamic Simulation and Short Circuit Models for SANY SE87/93 20MW 60 Hz Wind Turbine Generator”, available at http://interchange.puc.state.tx.us/WebApp/Interchange/Documents/4049926732717.pdf
[30] Siemens Inc. PSS/E 32.0 PSSE Model Library, June 2009.
[31] GE Energy, “Evolution and Development of Generic WTG Models in North America for Transient Stability Analyses”. Workshop on Resiliency for Power Networks of the Future, May 08, 2015. KTH – Royal Institute of Technology, Stockholm, Sweden
[32] L. Pereira, D. Kosterev, P. Mackin, D. Davis, J. Undrill and W. Zhu. “An Interim Dynamic Motor Load Model for Stability Studies in WSCC”. IEEE Transaction on Power Systems, Vol 17 No. 4, 2002.
[33] IEEE Task Force on Load Representation for Dynamic Performance, “Standard Models for Power Flows and Dynamic Performance Simulation,” IEEE Transactions on Power Systems, vol. 10, no.3,August 1995, pp. 1302-1313.
[34] D. Kosterev, A. Meklin, J. Undrill, B. Lesieutre, W. Price, D. Chassin, R. Bravo and S. Yang, "Load modeling in power system studies: WECC progress update," 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, 2008, pp. 1-8.
DOI: 10.1109/PES.2008.4596557.
[35] NERC, Dynamic Load Modeling Technical Reference Document, September 2016. Available at http://www.nerc.com/comm/PC/LoadModelingTaskForceDL/Dynamic Load Modeling Tech Ref 2016-11-14 - FINAL.PDF
[36] E. Muljadi, S. Pasupulati, A. Ellis and D. Kosterov, "Method of equivalencing for a large wind power plant with multiple turbine representation," 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, 2008, pp.1-9 DOI: 10.1109/PES.2008.4596055
[37] A. M. S. Al-bayati, F. Mancilla-David and J. L. Domínguez-Garcíal, "Aggregated models of wind farms: Current methods and future trends," 2016 North American Power Symposium (NAPS), Denver, CO, 2016, pp. 1-6.
DOI: 10.1109/NAPS.2016.7747954
[38] M. Ali, J. V. Milanovic, Irinel-Sorin Ilie and Gianfranco Chicco. “Comparison of wind farm aggregate models for transient stability studies”, 17th Power Systems Computation Conference. Stockholm Sweden, August 22-26, 2011
[39] Australian Energy Market, “Wind Turbine Plant Capabilities Report”, 2013 Wind Integration Studies, 2013. ABN 94 072 010 327
[40] M. G. Halacli and A. Demiroren, “Robust Voltage/VAR Control Using PSO Based STATCOM: A Case Study in Turkey, Electric Power Components and Systems”, 2006, 44:8, 894-902, DOI: 10.1080/15325008.2016.1140849
[41] Ali and Zera, “Presenting an Innovative Method to Determine the Optimal Size of Statcom to Improve the Static Voltage Stability in the Power Systems”, Indian Journal of Fundamental and Applied Life Science, 2015, Vol. 5(S1), pp 2373-2383. Available also at http://www.cibtech.org/sp.ed/jls/2015/01/jls.htm
[42] F, M, A. Mohamed, H. Shareef, and Z. Hadi (2013) “Power quality improvement in distribution systems considering Optimum D-STATCOM placement”. Jurnal Kejuruteraan (25) pp. 11-18. ISSN 0128-0198
[43] X. Yu, C. Singh, S. Jakovljevic, D. Ristanovic and G. Huang, "Total transfer capability considering FACTS and security constraints," 2003 IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat. No.03CH37495), 2003, pp. 73-78 Vol.1. DOI: 10.1109/TDC.2003.1335159
[44] E. M. A, B. Z, H. R, M. A and G. B. G. “Optimal Placement and Sizing of STATCOM to Improve Power Quality Considering Wind Generation”, ICRED 2013.
[45] S. Varshney, L. Srivastava and M. Pandit, “Optimal location and sizing of Statcom for Voltage Security Enhancement Using PSO-TVAC”, 2011 International Conference on Power and Energy Systems, Chennai, 2011, pp.1-6. DOI:10.1109/ICPES.2011.6156646
[46] T. Aziz, U. P. Mhaskar, T. K. Saha and N. Mithulananthan, "A grid compatible methodology for reactive power compensation in renewable based distribution system," 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, 2011, pp. 1-8 DOI: 10.1109/PES.2011.6039104
[47] T. Aziz, T. K. Saha and N. Mithulananthan, "Static and dynamic VAR planning to support widespread penetration of distributed generation in distribution system," AUPEC 2011, Brisbane, QLD, 2011, pp. 1-6.
[48] Z. Deng, M. Liu, Y. Ouyang, S. Lin and M. Xie, "Multi-Objective Mixed-Integer Dynamic Optimization Method Applied to Optimal Allocation of Dynamic Var Sources of Power Systems," in IEEE Transactions on Power Systems, vol. 33, no. 2, pp. 1683-1697, March 2018. DOI: 10.1109/TPWRS.2017.2724058
[49] P. W. Sauer and M. A. Pai, Power system dynamics and stability. Upper Saddle River, N.J. Prentice Hall, 1998. (Last updated 2006)
[50] T. Deb and A. S. Siddiqui. “Optimal Placement of STATCOM using Gravitational Search Algorithm for Enhanced Voltage Stability”, WSEAS on Power Transaction Vol 11, 2016.
[51] V. Komoni, I. Krasniqi, G. Kabashi and A. Alidemaj, "Increase power transfer capability and controlling line power flow in power system installed the FACTS," 7th Mediterranean Conference and Exhibition on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2010), Agia Napa, 2010, pp. 1-6.
DOI: 10.1049/cp.2010.0920
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code