Responsive image
博碩士論文 etd-0626118-141345 詳細資訊
Title page for etd-0626118-141345
論文名稱
Title
探討第五型肌球蛋白抑制劑pentabromopseudilin 對TGF-β訊息傳遞之影響
Study the effects of myosin V inhibitor, pentabromopseudilin , in TGF-β-induced responsiveness
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-12
繳交日期
Date of Submission
2018-07-26
關鍵字
Keywords
小分子抑制劑、脂筏、第五型肌球蛋白、Pentabromopseudilin、轉型生長因子β
Myosin Va, lipid raft, small molecular inhibitors, Pentabromopseudilin, TGF-β
統計
Statistics
本論文已被瀏覽 5630 次,被下載 29
The thesis/dissertation has been browsed 5630 times, has been downloaded 29 times.
中文摘要
轉型生長因子β (Transforming Growth Factor-β, TGF-β)是一種多功能細胞激素,影響廣泛生理功能,在細胞當中TGF-β及其訊息傳遞須受嚴格控制,TGF-β訊息傳遞起始於Type II TGF-β receptor (TβRII) 和TβRI 結合後活化下游Smad蛋白質,將訊息傳入細胞核後控制基因表現。在癌症發展過程中TGF-β有著截然不同的調控,於初期癌症中TGF-β會抑制細胞生長已達到抑制腫瘤發展的過程,在癌症發展晚期時,TGF-β會促進細胞增生並加強癌細胞的入侵能力,除此之外,TGF-β也被證實和其他疾病息息相關,例如:器官纖維化和自體免疫疾病,因此TGF-β訊息傳遞的小分子抑制劑可以作為上述疾病有淺力的藥物。Pentabromopseudilin (PBrP)是一種天然的氯吡咯衍生物,目前可以人工合成,在哺乳類動物細胞當中可以作為Myosin V蛋白質的抑制劑。在本篇研究當中,我們發現PBrP 可以加速TβRII 被降解,以此降低細胞對TGF-β的反應,PBrP 會抑制TGF-β誘導的SMAD蛋白質磷酸化與PAI-1報導基因啟動子活化,半抑制濃度(half maximal inhibitory concentration, IC50)介於0.05到0.1 μM之間,在A549和HepG2細胞當中PBrP 會抑制EMT (epithelial-to-mesenchymal transition)的發生過程,並減弱細胞的爬行能力。經由實驗證實PBrP 會使細胞膜表面TβRII由lipid raft區域經胞吞作用進入細胞後送至溶媒體降解,使細胞膜表面可接收TGF-β訊息的受氣數量降低,最後造成細胞對TGF-β的反應下降。
Abstract
Transforming Growth Factor-β (TGF-β) is a multifunctional cytokine that involved in many biological processes. TGF-β signaling transduction initiates when binding to Type II TGF-β receptor (TβRII). Once binding to TGF-β, TβRII forms heterocomplex with Type I TGF-β receptor (TβRI) and phosphorylates Smad2 and Smad3. P-Smad2/3 then forms a homotrimer with Smad4. Finally, R-Smad/Smad4 complexes are then translocated into the nucleus where they act as a transcriptional regulator of target genes. TGF-β signaling plays an opposite role during carcinoma progression. In the early stage, TGF-β acts as a tumor suppressor through inhibiting cell proliferation. Conversely, TGF-β promotes tumor cell proliferation and enhances mobility of cell in the late stage of carcinoma. In addition, TGF-β also is associated to other diseases such as organ fibrosis and autoimmune diseases. Pentabromopseudilin (PBrP) is a natural chlorinated phenylpyrrole compound that shows a broad range of antimicrobial activity. In mammalian cells, PBrP acts as an allosteric inhibitor of myosin 1c (Myo1c). In this study, we find that PBrP attenuates TGF-β responsiveness by promoting degradation of surface TβRII. Furthermore, PBrP inhibits TGF-β-induced Smad2/3 phosphorylation and plasminogen activator inhibitor-1 (PAI-1) promoter activation with a IC50 betewwn 0.05 μM to 0.1μM. Abolishing the process of epithelial-to-mesenchymal transition (EMT) in A549 and HepG2 cells, PBrP is found to suppress the mobility of cells. The results also demonstrate that PBrP directs surface TβR-II translocation to non-raft fractions from lipid raft. The translocation is followed by internalization and degradation of TβRII via lysosomal pathway. By accelerating TβR-II degradation, PBrP inhibits TGF-β-stimulated cellular responsiveness.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
縮寫表 vi
前言 1
材料 8
一、細胞株 8
二、細胞培養(Cell culture) 8
三、質體備製 (Plasmids) 8
四、真核細胞轉染 (Transfection) 8
五、西方墨點法 (Western Blotting) 8
六、免疫螢光染色法 (Immunofluorescence) 9
七、蔗糖濃度梯度離心 (Sucrose Gradient Centrifugation) 9
八、螢火蟲冷光活性分析 (Luciferase Activity Assay) 10
九、細胞核萃取 (Nuclear Extract) 10
十、細胞膜表面受器標定及胞吞試驗 (Biotinylation and Endocytosis Assays) 10
十一、細胞基因剔除 10
實驗方法 11
一、細胞培養 (Cell Culture) 11
二、質體製備 11
三、真核細胞轉染 (Transfection) 11
四、西方墨點法 (Western Blot) 12
五、免疫螢光染色法 (Immunofluorescence staining) 13
六、蔗糖濃度梯度離心 (Sucrose Gradient Centrifugation) 13
七、螢火蟲冷光活性分析 (Luciferase Activity Assay) 14
八、細胞核萃取 ( Nuclear Extract ) 14
九、細胞膜表面受器標定及胞吞試驗 (Biotinylation and Endocytosis Assays) 14
十、細胞基因剔除 14
十一、傷口癒合實驗 15
結果 16
PBrP減弱TGF-β/Smad訊息傳遞 16
PBrP會抑制Smad2/3的核轉移 16
PBrP會抑制TGF-β誘導的轉錄活性 17
PBrP會抑制TGF-β誘導的EMT和細胞間基質製造 18
PBrP會干擾TGF-β誘導的細胞爬行 19
PBrP透過促進TβRII降解以抑制TGF-β訊息傳遞 19
剔除Myosin-Va基因會降低TβRII數量與TGF-β訊息傳遞 21
PBrP透過溶酶體使TβRII降解 21
PBrP促進TβRII經由lipid-raft區域降解 23
討論 44
參考文獻 48
補充圖表 53
參考文獻 References
參考文獻

1. Massagué J, Blain SW, Lo RS. TGFβ signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295-309.
2. Miyazono K, Olofsson A, Colosetti P, Heldin C-H. A role of the latent TGF‐beta 1‐binding protein in the assembly and secretion of TGF‐beta 1. The EMBO journal. 1991;10(5):1091-101.
3. Ikushima H, Miyazono K. TGFβ signalling: a complex web in cancer progression. Nature reviews cancer. 2010;10(6):415.
4. Ignotz RA, Massague J. Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. Journal of Biological Chemistry. 1986;261(9):4337-45.
5. Abe M, Harpel J, Metz C, Nunes I, Loskutoff D, Rifkin D. An assay for transforming growth factor-β using cells transfected with a plasminogen activator inhibitor-1 promoter-luciferase construct. Analytical biochemistry. 1994;216(2):276-84.
6. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, et al. TGF‐β receptor‐mediated signalling through Smad2, Smad3 and Smad4. The EMBO journal. 1997;16(17):5353-62.
7. Heldin C-H, Miyazono K, Ten Dijke P. TGF-β signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997;390(6659):465.
8. Chen Y, Lebrun J-J, Vale W. Regulation of transforming growth factor β-and activin-induced transcription by mammalian Mad proteins. Proceedings of the National Academy of Sciences. 1996;93(23):12992-7.
9. Zhang Y, Musci T, Derynck R. The tumor suppressor Smad4/DPC 4 as a central mediator of Smad function. Current biology. 1997;7(4):270-6.
10. Lagna G, Hata A, Hemmati-Brivanlou A, Massagué J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature. 1996;383(6603):832.
11. Wakefield LM, Roberts AB. TGF-β signaling: positive and negative effects on tumorigenesis. Current opinion in genetics & development. 2002;12(1):22-9.
12. Bierie B, Moses HL. Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer. Nature Reviews Cancer. 2006;6(7):nrc1926.
13. Araki K, Shimura T, Suzuki H, Tsutsumi S, Wada W, Yajima T, et al. E/N-cadherin switch mediates cancer progression via TGF-β-induced epithelial-to-mesenchymal transition in extrahepatic cholangiocarcinoma. British journal of cancer. 2011;105(12):1885.
14. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 2009;119(6):1420-8.
15. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Developmental cell. 2008;14(6):818-29.
16. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. The Journal of clinical investigation. 2003;112(12):1776-84.
17. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nature genetics. 2001;29(2):117.
18. Akhurst RJ, Derynck R. TGF-β signaling in cancer–a double-edged sword. Trends in cell biology. 2001;11(11):S44-S51.
19. Hancock JF. Lipid rafts: contentious only from simplistic standpoints. Nature Reviews Molecular Cell Biology. 2006;7(6):456.
20. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387(6633):569.
21. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. science. 2010;327(5961):46-50.
22. Hailstones D, Sleer LS, Parton RG, Stanley KK. Regulation of caveolin and caveolae by cholesterol in MDCK cells. Journal of lipid research. 1998;39(2):369-79.
23. Lajoie P, Nabi IR. Lipid rafts, caveolae, and their endocytosis. International review of cell and molecular biology. 282: Elsevier; 2010. p. 135-63.
24. ten Dijke P, Hill CS. New insights into TGF-β–Smad signalling. Trends in biochemical sciences. 2004;29(5):265-73.
25. Singh P, Wig J, Srinivasan R. The Smad family and its role in pancreatic cancer. Indian journal of cancer. 2011;48(3):351.
26. Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014;7(344):re8-re.
27. Chen C-L, Hou W-H, Liu I-H, Hsiao G, Huang SS, San Huang J. Inhibitors of clathrin-dependent endocytosis enhance TGFβ signaling and responses. Journal of Cell Science. 2009;122(11):1863-71.
28. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nature cell biology. 2003;5(5):410.
29. Zhao B, Chen Y-G. Regulation of TGF-β signal transduction. Scientifica. 2014;2014.
30. Huang F, Chen Y-G. Regulation of TGF-β receptor activity. Cell & bioscience. 2012;2(1):9.
31. Chen C-L, Chen Y-P, Lin M-W, Huang Y-B, Chang F-R, Duh T-H, et al. Euphol from euphorbia tirucalli negatively modulates TGF-β responsiveness via TGF-β receptor segregation inside membrane rafts. PloS one. 2015;10(10):e0140249.
32. Chen C-L, Yang P-H, Kao Y-C, Chen P-Y, Chung C-L, Wang S-W. Pentabromophenol suppresses TGF-β signaling by accelerating degradation of type II TGF-β receptors via caveolae-mediated endocytosis. Scientific reports. 2017;7:43206.
33. Burkholder PR, Pfister RM, Leitz FH. Production of a pyrrole antibiotic by a marine bacterium. Applied microbiology. 1966;14(4):649-53.
34. Ohri RV, Radosevich AT, Hrovat KJ, Musich C, Huang D, Holman TR, et al. A Re (V)-catalyzed C− N bond-forming route to human lipoxygenase inhibitors. Organic letters. 2005;7(12):2501-4.
35. Martin R, Jäger A, Böhl M, Richter S, Fedorov R, Manstein DJ, et al. Total Synthesis of Pentabromo‐and Pentachloropseudilin, and Synthetic Analogues—Allosteric Inhibitors of Myosin ATPase. Angewandte Chemie International Edition. 2009;48(43):8042-6.
36. Fedorov R, Böhl M, Tsiavaliaris G, Hartmann FK, Taft MH, Baruch P, et al. The mechanism of pentabromopseudilin inhibition of myosin motor activity. Nature Structural and Molecular Biology. 2009;16(1):80.
37. Preller M, Chinthalapudi K, Martin R, Knölker H-J, Manstein DJ. Inhibition of Myosin ATPase Activity by Halogenated Pseudilins: A Structure–Activity Study. Journal of medicinal chemistry. 2011;54(11):3675-85.
38. Vale RD. Myosin V motor proteins: marching stepwise towards a mechanism. J Cell Biol. 2003;163(3):445-50.
39. Sellers JR, Veigel C. Walking with myosin V. Current opinion in cell biology. 2006;18(1):68-73.
40. Eichler T, Kögel T, Bukoreshtliev N, Gerdes H-H. The role of myosin Va in secretory granule trafficking and exocytosis. Portland Press Limited; 2006.
41. Sun Y, Chiu TT, Foley KP, Bilan PJ, Klip A. Myosin Va mediates Rab8A-regulated GLUT4 vesicle exocytosis in insulin-stimulated muscle cells. Molecular biology of the cell. 2014;25(7):1159-70.
42. Poncelet A-C, De Caestecker MP, Schnaper HW. The transforming growth factor-βbgr/SMAD signaling pathway is present and functional in human mesangial cells. Kidney international. 1999;56(4):1354-65.
43. Widom RL, Culic I, Lee JY, Korn JH. Cloning and characterization of hcKrox, a transcriptional regulator of extracellular matrix gene expression. Gene. 1997;198(1):407-20.
44. O’Keefe E. Nucleic acid delivery: lentiviral and retroviral vectors. Materials and Methods. 2013;3:174.
45. Inman GJ, Nicolás FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-β superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Molecular pharmacology. 2002;62(1):65-74.
46. Ozdamar B, Bose R, Barrios-Rodiles M, Wang H-R, Zhang Y, Wrana JL. Regulation of the polarity protein Par6 by TGFß receptors controls epithelial cell plasticity. Science. 2005;307(5715):1603-9.
47. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871-90.
48. Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005;122(5):735-49.
49. Lecuona E, Minin A, Trejo HE, Chen J, Comellas AP, Sun H, et al. Myosin-Va restrains the trafficking of Na+/K+-ATPase-containing vesicles in alveolar epithelial cells. J Cell Sci. 2009;122(21):3915-22.
50. Ciechanover A. Proteolysis: from the lysosome to ubiquitin and the proteasome. Nature reviews Molecular cell biology. 2005;6(1):79.
51. Ullrich O, Reinsch S, Urbé S, Zerial M, Parton RG. Rab11 regulates recycling through the pericentriolar recycling endosome. The Journal of cell biology. 1996;135(4):913-24.
52. Chen JW, Murphy TL, Willingham MC, Pastan I, August JT. Identification of two lysosomal membrane glycoproteins. The Journal of cell biology. 1985;101(1):85-95.
53. Salzer U, Prohaska R. Stomatin, flotillin-1, and flotillin-2 are major integral proteins of erythrocyte lipid rafts. Blood. 2001;97(4):1141-3.
54. Roberts AB. Molecular and cell biology of TGF-β. Mineral and electrolyte metabolism. 1998;24(2-3):111-9.
55. Chen Y-G. Endocytic regulation of TGF-β signaling. Cell research. 2009;19(1):58.
56. Willems E, Cabral-Teixeira J, Schade D, Cai W, Reeves P, Bushway PJ, et al. Small molecule-mediated TGF-β type II receptor degradation promotes cardiomyogenesis in embryonic stem cells. Cell stem cell. 2012;11(2):242-52.
57. Le Roy C, Wrana JL. Clathrin-and non-clathrin-mediated endocytic regulation of cell signalling. Nature reviews Molecular cell biology. 2005;6(2):112.
58. Razani B, Zhang XL, Bitzer M, von Gersdorff G, Böttinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)-β/SMAD signaling through an interaction with the TGF-β type I receptor. Journal of Biological Chemistry. 2001;276(9):6727-38.
59. Hayes S, Chawla A, Corvera S. TGFβ receptor internalization into EEA1-enriched early endosomes: role in signaling to Smad2. The Journal of cell biology. 2002;158(7):1239-49.
60. Bond LM, Tumbarello DA, Kendrick-Jones J, Buss F. Small-molecule inhibitors of myosin proteins. Future medicinal chemistry. 2013;5(1):41-52.
61. Martin R, Risacher C, Barthel A, Jäger A, Schmidt AW, Richter S, et al. Silver (I)‐Catalyzed Route to Pyrroles: Synthesis of Halogenated Pseudilins as Allosteric Inhibitors for Myosin ATPase and X‐ray Crystal Structures of the Protein–Inhibitor Complexes. European Journal of Organic Chemistry. 2014;2014(21):4487-505.
62. Bond LM, Brandstaetter H, Sellers JR, Kendrick-Jones J, Buss F. Myosin motor proteins are involved in the final stages of the secretory pathways. Portland Press Limited; 2011.
63. Rudolf R, Bittins CM, Gerdes HH. The role of myosin V in exocytosis and synaptic plasticity. Journal of neurochemistry. 2011;116(2):177-91.
64. Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy. International journal of biological sciences. 2012;8(7):964.
65. Akhurst RJ, Hata A. Targeting the TGFβ signalling pathway in disease. Nature reviews Drug discovery. 2012;11(10):790.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code