Responsive image
博碩士論文 etd-0626118-223114 詳細資訊
Title page for etd-0626118-223114
論文名稱
Title
針對可穿戴式心電圖前端的線路干擾做自動偵測並使電極平衡
Automatic line interference detection and electrode rebalancing for wearable ECG front-end
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-23
繳交日期
Date of Submission
2018-07-26
關鍵字
Keywords
欠採樣、格策爾演算法、生醫訊號、數位電位器、不平衡匹配
biomedical recording, dual potentiometers, undersampling, imbalance impedance, Goertzel algorithm
統計
Statistics
本論文已被瀏覽 5678 次,被下載 0
The thesis/dissertation has been browsed 5678 times, has been downloaded 0 times.
中文摘要
在量測生醫訊號過程中容易產生難以避免的60赫茲的雜訊,通常來自於傳輸線受到外界電磁波的干擾以及電極貼片因接觸媒介不同、老舊或鬆脫等因素。我們因而提出了一種架構是藉由偵測雜訊大小來調整電位器並消除兩電極貼片匹配不平衡的問題。使用一顆放大器晶片以及自製的三個電極貼片來量測生醫訊號,電極貼片的製作是使用銅箔貼片包覆一元硬幣並與單芯導線焊接。在偵測部分,使用格策爾演算法針對60赫茲的雜訊進行偵測,而這個演算法屬於針對單一頻率做計算,相較於快速傅立葉轉換需要計算所有頻率顯得更有效率,並利用欠採樣技巧,使採樣頻率低於奈奎斯定理,降低運算的時間與功耗。使用雙邊數位電位器,直接以微控制器進行控制調整。量測的波形圖透過LabVIEW 紀錄並使用Matlab重新繪製。透過演算法在微控制器的計算結果先將雜訊分成不同等級,我們以實驗結果定義合理的範圍區間解決因相位偏移所造成的不穩定,並以此為依據調整數位電位器以達到自動偵測與調整至匹配平衡的目的。此設計包含一顆放大器、兩顆微控制器及數位電位器的總功耗為18.36mW。
Abstract
To solve one of the major problems in recording biopotentials, which is the unwanted 60Hz interference produced by power line, an automatically adjusting resistors design is proposed. Three custom made electrodes composed of three copper coins covered by copper sheet, and a custom-design amplifier (ASIC) are used as a part of the recording setup. Goertzel algorithm and undersampling are implemented to detect interference. They save power compared to Fast Fourier Transform (FFT) for interference detection and a reduced sample rate from 121Hz to 80Hz. Off-the-shelf dual SPI digital potentiometers with 0 to 10kΩ tuning range are used to offset the imbalance of impedance from electrodes. A microcontroller operates the Goertzel algorithm and the dual potentiometers. Continuously detecting the interference level by Goertzel algorithm, the dual potentiometers keep adjusting the value until the impedance balance is achieved. A demonstrator setup is produced and tested on the bench. The testing waveform is recorded by Labview and evaluated by Matlab. The prototype consumes 18.36mW, including amplifiers, two microcontrollers, and dual digital dual potentiometers.
目次 Table of Contents
Contents
摘要 i
Abstract ii
Contents iii
List of Figure v
List of Tables viii
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Double Differential Model 3
1.3 Goertzel Algorithm 7
Chapter 2. Algorithm Design 11
2.1 Selection of fs and N 11
2.2 Coding Structure in Software 16
2.3 Overflow Problem 20
2.4 Phase Shift Problem 24
Chapter 3. Microcontroller Implementation 26
3.1 ADC 26
3.2 DAC 27
3.3 Goertzel Algorithm 28
3.4 Dual Potentiometers 32
3.5 Automatic Interference Detection 40
Chapter 4. Measurement and Result 49
4.1 Testing Equipment 49
4.2 Measurement 52
4.3 Result 56
Chapter 5. Conclusion and Future Work 59
References 60
Similarity report 62
參考文獻 References
[1] R. S. Khandpur, “Handbook of biomedical instrumentation,” Tata McGraw-Hill Education, 1992.
[2] J. Yoo, L. Yan, S. Lee, H. Kim, and H.-J. Yoo, “A wearable ECG acquisition system with compact planar-fashionable circuit board-based shirt,” IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 6, pp. 897–902, Nov. 2009.
[3] N. Rashmi, Ghousia Begum, Vipula Singh, “ECG denoising using wavelet transform and filters,” IEEE WiSPNET, pp. 2395 – 2400, March, 2017.
[4] Asif Ahamed, Asraf-Ul-Ahad, Hanif Ali Sohag, and Mohiuddin Ahmad, “Development of Low Cost Wireless ECG Data Acquisition System,” IEEE ICAEE, 17-19 December, 2015.
[5] N. Meziane, J. G. Webster, M. Attari, and A. J. Nimunkar, “Dry electrodes for electrocardiography,” IOP publishing, vol. 34, No. 9, 2013.
[6] M. S. Spach, R. C. Barr, J. W. Havstad, E. C. Long, “Skin electrode impedance and its effect on recording cardiac potentials,” Circulation, vol. 34, pp. 649-656, 1966.
[7] A. S. Berson and H. V. Pipberger, “Skin-electrode impedance problems in electrocardiography,” American Heart Journal, vol. 76, pp. 514-525, 1968, October 1968.
[8] O. H. Schmitt, “Averaging techniques employing several simultaneous physiological variables,” Ann. N. Y. Acad. Sci., vol. 115, pp. 952-975, July 1964.
[9] J. J. Almasi and O. H. Schmitt, “Systemic and random variations of ECG electrode system impedance,” Ann. N. Y. Acad. Sci., vol. 170, pp. 509-519, July 1970.
[10] J. C. Huhta and J. G.Webster, “60-Hz interference in electrocardiography,” IEEE Trans. Biomed. Eng., vol. BME-20, no. 2, pp. 91–101, Mar. 1973.
[11] T. Sunil Kumar, V. Kanhangad, “Gabor Filter-Based One-Dimensional Local Phase Descriptors for Obstructive Sleep Apnea Detection Using Single-Lead ECG,” IEEE Sensors Letters, vol. 2, no.1, February 2018.
[12] T. Karmaker; S. Anower; M. A. G. Khan, A. Habib, “A new adjustable window function to design FIR filter and its application in noise reduction from contaminated ECG signal,” IEEE R10-HTC, pp. 51-54, Dec. 2017.
[13] R. S. Figliola, and D. E. Beasley, “Theory and Design for Mechanical Measurements,” 4th ed., John Wiley & Sons Inc., 2006.
[14] R. Rieger, S. L. Deng, “Double-differential Recording and AGC Using Microcontrolled Variable Gain ASIC,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 21, no. 1, pp. 47-54, January 2013.
[15] S. K. Yoo, “Relative Measurement of Differential Electrode Impedance for Contact Monitoring in a Biopotential Amplifier,” International Journal of Control, Automation, and Systems, vol. 5, no. 5, pp. 601-605, October 2007.
[16] S. R. Bhide, “Digital Power System Protection,” PHI Learning Pvt. Ltd., pp. 155, 2014.
[17] S. Mitra, “Digital Signal Processing, Fourth Edition,” McGraw Hill Publishing, 2011.
[18] W. M. Gentleman, “An error analysis of Goertzel's (Watt's) method for computing Fourier coefficients,” The Computer Journal. vol. 12 no. 2, pp. 160–164, 1 February 1969.
[19] S. Claude, “Communication in the presence of noise,” Proceedings of the Institute of Radio Engineers. Vol. 37 no. 1, pp. 10–21, February 1998.
[20] W. T. Padgett, D. V. Anderson, “Fixed-Point Signal Processing,” Morgan & Claypool Publishers, 2009.
[21] Y. Adli, Y. Yamamoto, “Impedance balancing analysis for power-line interference,” IEEE Instrumentation and Measurement Technology Conference St. Paul, May 1998.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code