Responsive image
博碩士論文 etd-0627101-142937 詳細資訊
Title page for etd-0627101-142937
論文名稱
Title
光纖分佈式洩漏偵測系統之新構型設計
The Novel Configuration Design of the Distributed Fiber Optic Leak Detection System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-15
繳交日期
Date of Submission
2001-06-27
關鍵字
Keywords
同軸、分佈式、桑克干涉儀、洩漏偵測、光纖感測器
Optical Fiber Sensor., Distribution, Sagnac Interferometer, In-Line, Leak Detection
統計
Statistics
本論文已被瀏覽 5761 次,被下載 7432
The thesis/dissertation has been browsed 5761 times, has been downloaded 7432 times.
中文摘要
分佈式光纖感測系統的技術,是利用桑克干涉儀感測時變物理場的原理,可以用來量測擾動物理場的位置,且具有對連續位置做監測的能力。鑑於傳統桑克干涉儀的架構,感測光纖皆為環形設計,並不易於實際環境上的佈放,且需將一半環狀光纖的長度,做物理場感應的隔離保護。所以,本文提出以同軸式的概念,作為設計的方向。並以管線洩漏聲場為物理場,進行擾動位置的偵測。同軸式系統架構的訊號可測範圍為3×10-4 ~3×10-2 ,其動態範圍為40 dB。另一方面,提出一偏振無感受的系統架構,其訊號可測範圍為1.5×10-3 ~3×10-2 ,動態範圍為26 dB。
Abstract
The technique of the distributed fiber optic sensor system, the principle that we use Sagnac interferometer to sense time-varying physical field, can be used to measure the position of the disturbed physical field and have the ability of detecting continuous position. Based on the configuration of the Sagnac interferometer, sensing optic fiber is loop design, which is hard to be set in real surroundings, and a half length of loop fiber have to be the isolated protection of the physical field. Therefore, this essay brings up the In-Line conception to be the design direction. And we make use of the physical field of pipeline leak acoustic to detect disturbance position. The measurable range of systematic structure signal is 3×10-4 ~ 3×10-2 , and the dynamic range is 40 dB. On the other hand, the structure of polarization insensitive is brought up, the measurable range is 1.5×10-3 ~ 3×10-2 , and the dynamic range is 26 dB.
目次 Table of Contents
摘要 i
致謝 iii
目錄 iv
表目錄 viii
圖目錄 ix
符號表 xii
第一章 簡介
1.1 研究背景 1
1.2 研究動機 3
1.3 論文架構 5
第二章 感測系統之理論探討
2.1 感測原理 6
2.1.1 干涉原理 7
2.1.2 桑克干涉儀 8
2.2 感測系統之基本架構 8
2.2.1 光源單元 9
2.2.1.1 摻鉺光纖放大器自發性光源 9
2.2.1.2 光循環器 10
2.2.2 感測單元 11
2.2.2.1 感測光纖 11
2.2.2.2 2×2耦合器 12
2.2.2.3 偏振控制器 13
2.2.2.4 法拉第旋轉鏡 14
2.2.2.5 PZT相位調制器 14
2.2.3 訊號解調單元 15
2.3 系統元件的數學模型 16
2.3.1 光纖的瓊斯矩陣 17
2.3.2 法拉第旋轉鏡的瓊斯矩陣 17
2.3.3 光纖耦合器的瓊斯矩陣 18
第三章 感測系統之設計
3.1 位置偵測機制 19
3.2 系統構型的探討 22
3.2.1 系統架構是否產生訊號褪變的現象 22
3.2.2 光纖環狀結構有無環狀共振的效應 24
3.2.3 光纖環狀結構造成多組干涉光的問題 25
3.3 偏振無感受架構 26
3.3.1 光路分析 26
3.3.2 偏振分析 27
3.4 感測系統的訊號解調 28
3.5 感測系統的訊號分析 30
3.5.1零點頻率與洩漏點的關係 30
3.5.2 延遲光纖長度與干涉訊號強度的關係 31
3.5.3 零點頻率-洩漏點的靈敏度探討 33
3.6 傳統架構的分析 33
3.6.1 零點頻率與洩漏點的關係 33
3.6.2 零點頻率-洩漏點的靈敏度探討 35
3.7 同軸式與傳統架構的比較 35
第四章 實驗步驟與結果
4.1 實驗架構 36
4.2 系統元件的特性量測 37
4.2.1 PZT特性的量測 37
4.2.2 光纖耦合器的量測 39
4.2.3 法拉第旋轉鏡的量測 39
4.2.4 光循環器的量測 40
4.3 感測系統的量測 40
4.3.1 洩漏點的量測 41
4.3.1.1 干涉訊號的量測 41
4.3.1.2 精確度的分析 42
4.3.1.3 零點頻率-洩漏點及其靈敏度關係 43
4.3.2 延遲光纖的量測 43
4.3.3 動態範圍的量測 44
4.4 傳統桑克干涉儀的量測 44
4.5 結果與討論 45
4.5.1 同軸式架構之優點 45
4.5.2 實際問題之探討 46
4.5.3 同軸式架構之缺點 47
第五章 結論與未來展望
5.1 結論 48
5.2 未來展望 48
參考文獻 50
附表 54
附圖 61
附錄A 89
附錄B 90
中英文對照表 95
作者簡歷 98
參考文獻 References
1.A. D. Kersey, “A review of recent developments in fiber optic sensor technology,” Optical Fiber Technology, Vol. 2, pp. 291-317, 1996.
2.T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, and G. H. Sigel, “Optical fiber sensor technology,” IEEE J. Quantum Electron., Vol. QE-18, No. 4, pp. 626-665, 1982.
3.A. D. Kersey, “Multiplexed fiber optic sensors,” Distributed and Multiplexed Fiber Optic Sensors II, Proc. SPIE, Vol. 1797, pp. 161- 185, 1992.
4.J. P. Dakin, The Distributed Fiber Optic Sensing Handbook, pp. 45-53, IFS, UK, Springer-Verlag, 1990.
5.J. D. Dakin, D. A. J. Pearce, A. P. Strong, and C. A. Wade, “A novel distributed optical fiber sensing system enabling location of disturbances in a Sagnac loop interferometer,” Fiber Optic and Laser Sensors V, Proc. SPIE, Vol. 838, pp. 325-328, 1987.
6.S. J. Spammer, P. L. Swart, and A. A. Chtcherbakov, “Merged Sagnac -Michelson interferometer for distributed disturbance detection,” J. Lightwave Technol., Vol. 15, No. 6, pp. 972-976, 1997.
7.X. Fang, “Fiber optic distributed sensing by two-loop Sagnac interferometer,” Opt. Lett., Vol. 21, No. 6, pp. 444-446, 1996.
8.S. J. Spammer, P. L. Swart, and A. Booysen, “Interferometric distributed optical-fiber sensor,” Appl. Opt., Vol. 35, No. 22, pp. 4522 -4525, 1996.
9.E. Udd, “Sagnac distributed sensor concepts,” Distributed and Multiplexed Fiber Optic Sensors, Proc. SPIE, Vol. 1586, pp. 46-52, 1991.
10.Eric Udd, Fiber Optical Sensors, pp. 233-240, John Wiley and Sons, Inc., New York, 1991.
11.E. Udd, “Fiber-optic acoustic sensor based on the Sagnac interferometer,” Proc. Soc. Photo-Opt. Instrum. Eng., Vol. 425, pp. 90 -95, 1983.
12.R. A. Bergh, H. C. Lefevre, H. J. Shaw, “All-single-mode fiber-optic gyroscope,” Opt. Lett., Vol. 6, No. 4, pp. 198-200, 1981.
13.A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarisation- insensitive fibre optic Michelson interferometer,” Electron. Lett., Vol. 27, No. 6, pp. 518-520, 1991.
14.Eric Udd, Fiber Optical Sensors, pp. 273-274, John Wiley and Sons, Inc., New York, 1991.
15.G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt., Vol. 18, No. 9, pp. 1445-1448, 1979.
16.Joseph T. Verdeyen, Laser Electronics, pp. 234-238, Prentice Hall International, Inc., 1995.
17.John Dakin, Brian Culshaw, Optical Fiber Sensors, Principles and Components, Vol. I, pp. 87, Artech House, Boston, London, 1988.
18.Stamatios V. Kartalopoulos, Introduction to DWDM Technology, pp. 133-134, IEEE Press, Inc., New York, 2000.
19.Luc B. Jeunhomme, Single-Mode Fiber Optics, pp. 60-95, Marcel Dekker, Inc., New York, 1990.
20.K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 2, pp. 168-170, Chapman & Hall, London, 1998.
21.H. C. Lefever, “Single-mode fibre fractional wave devices and polarization controllers,” Electron. Lett., Vol. 16, No. 20, pp. 778-780, 1991.
22.W. W. Lin, S. T. Shih, M. H. Chen, and S. C. Huang, “The transfer functions of PZT phase modulators in optical fiber sensors,” Proc. Natl. Sci. Counc. ROC(A)., Vol. 18, No. 6, pp. 570-575, 1994.
23.A. Yu and A. S. Siddiqui, “Systematic method for the analysis of optical fibre circuits,” IEE Proc.-Optoelectron., Vol. 142, No. 4, pp. 165-175, 1995.
24.A. Yu and A. S. Siddiqui, “Optical modulators using fibreoptic Sagnac interferometers,” IEE Proc.-Optoelectron., Vol. 141, No. 1, pp. 1-7, 1994.
25.A. A. Pollock and S.-Y. S. Hsu, “Leak detection using acoustic emission,” J. Acoustic Emission, Vol. 1, No. 4, pp. 237-243, 1982.
26.W. A. Wassef, M. N. Bassim, M. Houssny-Emam, and K. Tangri, “Acoustic emission spectra due to leaks from circular holes and rectangular slits,” J. Acoust. Soc. Am., Vol. 77, No. 3, pp. 916-923, 1985.
27.Eric Udd, Fiber Optical Sensors, pp. 240-250, John Wiley and Sons, Inc., New York, 1991.
28.A. Booysen, P. L. Swart, S. J. Spammer and J. Meyer, “New ring resonator gyroscope utilizing a double cavity and a low coherence length source,” Fiber Optic and Laser Sensors XI, Proc. SPIE, Vol. 2070, pp. 225-233, 1993.
29.K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 2, pp. 307-308, Chapman & Hall, London, 1998.
30.M. R. Spiegel, Mathematical handbook, pp. 136-141, McGraw-Hill, New York, 1981.
31.J. P. Kurmer, S. A. Kingsley, J. S. Laudo, and S. J. Krak, “Distributed fiber optic acoustic sensor for leak detection,” Distributed and Multiplexed Fiber Optic Sensors, Proc. SPIE, Vol. 1586, pp. 117-128, 1991.
32.A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE J. Quantum Electron., Vol. QE-18, No. 10, pp. 1647- 1653, 1982.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code