Responsive image
博碩士論文 etd-0627101-151622 詳細資訊
Title page for etd-0627101-151622
論文名稱
Title
銦錫氧化物與氮化鎵金屬接觸之研究
Study of InSnO Ohmic Contact on GaN
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-22
繳交日期
Date of Submission
2001-06-27
關鍵字
Keywords
氮化鎵、有機金屬化學氣相沈積法、氧化銦錫
MOCVD, InSnO, GaN
統計
Statistics
本論文已被瀏覽 5701 次,被下載 40
The thesis/dissertation has been browsed 5701 times, has been downloaded 40 times.
中文摘要
由於兼具透明與導電特性,氧化銦錫薄膜在光電產業中已經被廣泛地研究。氧化銦錫為寬能隙、n型高退化半導體,因而擁有低的電阻係數(2-4×10-4 Ωcm)。在薄膜成長時,錫雜質佔據氧空缺而形成退化半導體。根據以上特性,銦錫氧化物被廣泛地應用。在本實驗中,我們使用熱蒸鍍法在n型及p型氮化鎵薄膜(2-4um)上成長銦錫氧化物,並嘗試解決光電元件中發光強度及電流散佈間的衝突。根據實驗結果,我們將對於銦錫氧化物與氮化鎵的金屬接面,做深入的研究與探討。
近年來,光輔助溼蝕刻的建立增進了氮化鎵在室溫下之化學活性。經由紫外線照射,在半導體表面產生電子電洞對,並促進此電化學模型的氧化還原反應。在本實驗中,我們將n型氮化鎵置於氫氧化鉀溶液中,再使用氦鎘雷射進行光輔助溼蝕刻,並可得到300nm/min的蝕刻速率。
Abstract
The GaN-based materials have successfully developed on short-wavelength laser diodes (LDs), light-emitting diodes (LEDs) and ultraviolet photodetector. Indium-tin-oxide (ITO) thin films have been studied extensively in the optoelectronic industry because they combine unique transparent and conducting properties. ITO thin film is a highly degenerate n-type semiconductor which has a low electrical resistivity of 2-4×10-4 Ωcm. The low resistivity value of ITO films is due to a high carrier concentration because the Fermi level (EF) is located above the conduction level (EC). The degeneracy is caused by both oxygen vacancies and substitutional tin dopants created during film deposition. Furthermore, ITO is a wide band gap semiconductor visible and near-IR region of the electromagnetic spectrum. Due to these unique properties, ITO has been used in a wide range of applications. In this study, we deposited InSnO film on n-type and p-type GaN by thermal evaporator to overcome the confrontation between brightness and current spreading in optoelectronic devices. According to the experimental results, we study the mechanisms and characteristics of InSnO on GaN.
Photoenhanced wet etching of GaN has recently been identified as a means of greatly improving the chemical reactivity of GaN at room temperature. Ultraviolet illumination is used to generate electron-hole pairs at the semiconductor surface, which enhance the oxidation and reduction reactions within an electrochemical cell. We have previously studied a photocnhanced wet etching process n-type GaN using HeCd laser illumination and KOH solution. In this study, etch rates of approximately 300nm/min were obtained.

目次 Table of Contents
CONTENTS I
LIST OF FIGURES III
ABSTRACT VI

CHAPTER1 INTRODUCTION 1
1.1 The Background of Research on III-Nitrides 1
1.2 Group-III Nitride Compund Semiconductors 3
1.3 The Application of Indium Tin Oxide 6
1.4 Room-Temperature Photoenhanced Wet Etching of n-GaN 8

CHAPTER2 EXPERIMENTS 11
2.1 MOCVD Growth System 11
2.2 Substrate Preparation of Sapphire 14
2.3 GaN Epilayer Growth Processes 14
2.4 Indium Tin Oxide Contacts produced by Thermal Evaporator 15
2.5 Sample Preparation of GaN/Sapphire 15
2.6 Indium Tin Oxide Thin Films produced by Liquid Phase
Deposition 16
2.7 Substrate Preparation of Silicon(100) 17
2.8 Room-Temperature Photoenhanced Wet Etching of GaN 17
2.9 Sample Preparation of GaN/Sapphire 18

CHAPTER3 RESULTS AND DISCUSSION 19
3.1 GaN Growth by MOCVD 19
3.1.1 Effect of Substrate Baking 20
3.1.2 Effect of Flow Rate of Ammonia 20
3.1.3 Effect of Flow Rate of TEGa 21
3.1.4 Temperature of Nitridation and Buffer 22
3.1.5 Effcct of Nitridation Time 23
3.1.6 Growth Time of GaN Buffer Layer 24
3.1.7 Growth Temperature of GaN Epilayer 25
3.1.8 Mechanism of DAP 26
3.2 Formation of InSnO Contact on n-GaN by Thermal
Evaporation 28
3.2.1 Effect of Annealing Temperature 29
3.2.2 Effect of Annealing Time 31
3.2.3 Annealing at Different N2/O2 Time Ratios 32
3.2.4 Flow Rate of Oxygen 33
3.2.5 Thickness of The Annealed InSnO 33
3.3 Formation of InSnO Contact on p-GaN by Thermal
Evaporation 35
3.3.1 Effect of Annealing Temperature 35
3.3.2 Effect of Annealing Time 36
3.3.3 Annealing at Different N2/O2 Time Ratios 38
3.3.4 Flow Rate of Oxygen 38
3.3.5 Thickness of The Annealed InSnO 38
3.4 Formation of InSnO Thin Film on silicon by Liquid
Phase Deposition (LPD) 40
3.4.1 Concentration of H2SnF6 41
3.4.2 Deposition Temperature 41
3.4.3 Concentration of Activator HNO3 42
3.4.4 Annealing Temperature and Annealing Time 42
3.5 Room-Temperature Photoenhanced Wet Etching of GaN 44
3.5.1 KOH Solution Concentration 45
3.5.2 Annealing Treatment 46

CHAPTER4 CONCLUSIONS 47

REFERENCE 127
參考文獻 References
[1] R.juza and H.Hahn, Anorg. Allegem. Chem. , Vol.234, pp.282,
(1940).
[2] H.P.Maruska and J.J.Tietjen, Appl. Phys. Lett. , Vol.15, pp.367,
(1969).
[3] J.Nishizawa, F.Sakurai, Y.Okuno, and K.Itoh, J. Appl. Phys. ,
Vol.57,Iss.6, pp.2210, (1985).
[4] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. , Vol. 64,
Iss.13, pp.1687, (1994).
[5] Lin JF, Wu MC, Jou MJ, Chang CM, Lee BJ, Tsai YT. Electron. Lett. , 30,
pp.1793, (1994).
[6] Hagerott M, Jeon H, Nurmikko AV, Xie W, Grillo DC, Kobayashi M, Gunshor RL.
Appl. Phys. Lett. , 60, pp.2825, (1992).
[7] K.Tsukuma, T.Akiyama, and H.Imai, J. Non-Crys. Solids, 210, pp.48, (1997).
[8] M.S.Minsky, M.White, and E.L.Hu, Appl. Phys. Lett. 68,1531, (1996).
[9] H.Lu, Z.Wu, and I.Bhat, J.Electrochem. Soc., 144, L8, (1997).
[10] H.Jeon, V.Kozlov, P.Kellkar, A.V.Nurmikko, C.C.Chu, D.C.Grillo, J. Han,
G.C.Hua, and R.L.Gunshor, Appl. Phys. Lett. , Vol. 67, Iss. 12, pp.1668,
(1995).
[11] T.Ogino and M.Aoki, Japanese J. Appl. Phys. , Vol. 19, Iss. 12, pp. 2395,
(1980).
[12] A.E.Wickenden, D.K.Wickenden and T.J.Kistenmacher, J. Appl. Phys. , Vol.
75, Iss. 10, pp.5367, (1994).
[13] M.A.Khan, J.M.Vanhove, J.N.Kuznia, and D.T.Olson, Appl.
Phys. Lett. , Vol. 58, Iss. 21, pp.2408, (1991).
[14] E.R.Glaser, T.A.Kennedy, K.Doverspike, L.B.Rowland, D.K.Gaskill,
J.A.Freitas, M.A.Kahn, D.T.Olson, J.N.Kuznia, and D.K.Wickenden, Phys.
Rev. B-Cond. Matt. , Vol. 51, Iss. 19, pp.13326, (1995).
[15] Kenji Uchida, Akiyoshi Watanabe, and Fumiko Yano, International Symposium
on Blue Laser and Light Emitting Diodes, Chiba Univ. , Japan, March 5-7,
(1996).
[16] Kenji Uchida, Akiyoshi Watanabe, and Fumiko Yano, International Symposium
on Blue Laser and Light Emitting Diodes, Chiba Univ. , Japan, March 5-7,
(1996).
[17] S. Kaiser, H. Preis, W. Gebhardt, O. Ambacher, H. Angerer, M. Stutzmann,
A. Rosenauer, and D. Gerthsen, J. J. Appl. Phys. Part 1-Regular, Vol. 37,
Iss. 1, pp.84, (1998).
[18] X. Zhang, P. Kung, and M. Razeghi, in Gallium Nitride and Related
Materials, edited by R. D. Dupuis, F. A. Ponce, J. A. Edmond, and S.
Nakamura (MRS Symposia Proceedings, World Scientific, Singapore, 1995),
Vol. 395
[19] R. Niebuhr, K. Bachem, K. Dombrowski, M. Maier, W. Pletschen and U.
Kaufmann, J. Electron. Mat. , Vol. 24, Iss. 11, pp.1531, (1995).
[20] J.S.Foresi and T.D.Moustakas, Appl. Phys. Lett. , 63, pp.2859,(1993).
[21] M.Libra and L.Bardos,Vaccum 38, pp.455, (1993).
[22] J.K.Sheu, Y.K.Su, G.C.Chi, M.J.Jou, C.C.Liu, and C.M.Chang, Solid-State
Electron. , 43, pp.2081, (1999).
[23] J.K.Sheu, Y.K.Su, G.C.Chi, M.J.Jou, and C.M.Chang, Appl. Phys. Lett. ,
Vol. 72, pp.3317,(1998).
[24] Y.Sadaoka, T.Ajones, W.Gopel, S.Kimura, and N.Honda, J.Mater. Sci. 25.
pp.2632, (1990).
[25] E.Bertran, J.L.Morenza, and M.Varela, Thin Solid Films 129,pp.103, (1985).
[26] H.Kim, J.S.Horwitz, G.Kushto, A.Pique, Z.H.Kafafi, C.M.Gilmore, and
D.B.Chrisey, J. Appl. Phys. ,Vol. 88, 10, pp.6021(2000).
[27] E.Shanthi and V.Dutta, J. Appl. Phys. 51, 6243, (1980).
[28] H.W.Lehmann and R.Widmer, Thin Solid Films, 27, 359, (1975).
[29] J.Kane and W.Kern, J.Electrochem. Soc. ,123, 270, (1976).
[30] T.Tsuchiya and J.Koizumi, J.Ceram, Soc. Jpn. ,98, 1011, (1990).
[31] H. Nagayama, H.Honda and H.Kawahara, J.Electrochem. Soc. ,135,2013, (1988).
[32] H.Ino, M.Hishinuma, H.Nagayama and H.Kawahara, Japanese Patent H1-93443
(1989); H.Nagata,Japanese Patent, H426516 (1992); H.Nagata and
M.Hishinima, Japanese Patent, H3-285821, H3-285822 (1991); H.Kawahara and
H.Honda, Japanese Patent, S59-141441 (1984).
[33] H.Ino, M.Hishinuma, H.Nagayama and H.Kawahara, Japanese Patent S63-134667
(1988).
[34] Y.Sakai, T.Goda, A.Hishinuma and H.Kawahara,in: Proc. of the Int. Ceramics
Conf., Perth, Western Australia, AUSTCERAM 90.26-31 Aug. pp.474, (1990).
[35] Scrab K. Ghandhi, VLSI Fabrication Principlis (2nd ed.), pp.591.
[36] S.J.Pearton, C.R.Abenathy, F.Ren, J.R.Lothian, P.W.Wisk, and A.Katz, J.
Vac. Sci. Technol. A 11, 1772, (1993).
[37] J.R.Mileham, S.J.Pearton, C.R.Abernathy, J.D.Mackenzie, R.J.Shul, and
S.P.Kilcoyne, J. Vac. Sci. Technol. A 14, 836, (1996).
[38] I.Adesida, A.Mahajan, E.Andideh, M.A.Kahn, D.T.Olson, and J.N.Kuznia,
Appl. Phys. Lett. 63,2777, (1993).
[39] R.J.Shul, G.B.McClellan, S.A.Casalnuovo, D.J.Rieger, S.J.Pearton,
C.Constantine, C.Barratt, R.F.Karlicek, Jr., C.Tran, and M.Schurman, Appl.
Phys. Lett. 69, 1119, (1996).
[40] A.T.Ping, I.Adesida, and M.A.Khan, Appl.Phys. Lett. 67, 1250, (1995).
[41] H.P.Gillis, D.A.Choutov, K.P.Martin, M.D.Bremser, and R.F.Davis,
J.Electron. Mater. 26, 3, (1997).
[42] M.S.Minsky, M.White, and E.L.Hu, Appl.Phys.Lett. 68, 1531, (1996).
[43] H.Lu, Z.Wu, and I.Bhat, J.Electrochem. Soc. 144, L8, (1997).
[44] C.Youtsey, I.Adesida, and G.Bulman, Electron Lett. 33, 245, (1997).
[45] C.Youtsey, I.Adesida, and G.Bulman, Electron Lett. 71, 2151, (1997).
[46] R.W.Haisty, J.Electrochem. Soc. 108,790, (1961).
[47] R.Khare and E.L.Hu, J.Electrochem. Soc. 138, 1516, (1991).
[48] M.Ruberto, X.Zhang, R.Scarmozzino, A.E.Willner, D.V.Podlesnik, and
R.M.Osgood, Jr., J.Electrochem. Soc.138, 1174, (1991).
[49] C.Youtsey, I.Adesida, L.T.Romano, and G.Bulman, Appl. Phys. Lett. 72, 560,
(1998).
[50] K.G.Fertitta, A.L.Holmes, F.J.Ciuba, R.D.Dupuis, and F.A.Ponce, J.
Electron. Mater. , Vol. 24, Iss. 4, pp.257, (1995).
[51] B.P.Keller, S.Keller, D.Kapolnek, W.N.Jiang, Y.F.Wu, H.Masui, X.Wu,
B.Heying, J.S.Speck, U.K.Mishra, and S.P.Denbaars, J.Electron. Mater. ,
Vol. 24, Iss. 11, pp.1707, (1995).
[52] S.D.Hersee, J.Ramer, K.Zheng, C.Kranenberg, K.Malloy, M. Banas, and
M.Goorsky, J. Electron. Mater. , Vol. 24, Iss. 11, pp. 1519, (1995).
[53] X.H.Wu, D.Kapolnek, E.J.Tarsa, B.Heying, B.P.Keller, U.K.Mishra,
S.P.Denbaars, and J.S.Speck, Appl. Phys. Lett. , Vol. 68, Iss. 10, pp.
1371, (1996).
[54] R.Niebuhr, K.Bachem, K.Dombrowski, M.Maier, W.Pletschen and U.Kaufmann, J.
Electron. Mater. , Vol. 24, Iss. 11, pp.1531, (1995).
[55] S.Nakamura, T.Mukai, and M.Senoh, Appl. Phys. Lett. , Vol. 64, Iss. 13,
pp.1687, (1994).
[56] H.Jeon, V.Kozlov, P.Kellkar, A.V.Nurmikko, C.C.Chu, D.C.Grillo, J.Han,
G.C.Hua, and R.L.Gunshor, Appl. Phys. Lett. , Vol. 67, Iss. 12, pp.1668,
(1995).
[57] T. Ogino and M. Aoki, J. J. Appl. Phys. , Vol. 19, Iss. 12, pp.2395,
(1980).
[58] A.E.Wickenden, D.K.Wickenden and T.J.Kistenmacher, J. Appl. Phys. , Vol.
75, Iss. 10, pp.5367, (1994).
[59] M.A.Khan, J.M.Vanhove, J.N.Kuznia, and D.T.Olson, Appl. Phys. Lett. , Vol.
58, Iss. 21, pp.2408, (1991).
[60] E.R.Glaser, T.A.Kennedy, K.Doverspike, L.B.Rowland, D.K.Gaskill,
J.A.Freitas, M.A.Kahn, D.T.Olson, J.N.Kuznia, and D.K.Wickenden, Phys.
Rev. B-Cond. Matt. , Vol. 51, Iss. 19, pp. 13326, (1995).
[61] H.Amano, I.Akasaki, N.Sawaki, Y.Toyoda, Appl. Phys. Lett. , Vol. 48, Iss.
5, pp.353, (1986).
[62] Kenji Uchida, Akiyoshi Watanabe, and Fumiko Yano, International Symposium
on Blue Laser and Light Emitting Diodes, Chiba Univ., Japan, March 5-7,
(1996).
[63] S.H.Cho, K.Hata, T.Maruyama, and K.Akimoto, J. Crys. Growth, Vol. 173,
Iss. 3-4, pp.260, (1997).
[64] I.Akasaki, H.Amano, M.Kito, K.Hiramatsu, “J. Lumin. , Vol. 48-9, Iss. JAN-
, pp.666, (1991).
[65] S.Kaiser, H.Preis, W.Gebhardt, O.Ambacher, H.Angerer, M.Stutzmann,
A.Rosenauer, and D.Gerthsen, J. J. Appl. Phys. Part 1, Vol. 37, Iss. 1,
pp.84, (1998).
[66] T.Suski, P.Berlin, H.Teisseyre, M.Leszcyńsky, I.Grzegory, J.Jun,
M.Boćkowski, S.Porowski, and T.D. Moustakas, Appl. Phys. Lett. , Vol. 67,
Iss. 15, pp.2188, (1995).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.47.253
論文開放下載的時間是 校外不公開

Your IP address is 3.145.47.253
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code