Responsive image
博碩士論文 etd-0627101-230255 詳細資訊
Title page for etd-0627101-230255
論文名稱
Title
雙鏡式立體環形共振腔單縱模紅外光與綠光雷射之研製
The Study and Implementation of Compact Ring Laser for the Generation of Single Frequency IR and Green Lasers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-11
繳交日期
Date of Submission
2001-06-27
關鍵字
Keywords
極化、綠光問題、熱致雙折射、單縱模、環形共振腔、紅外光雷射、空間燒孔效應、綠光雷射
green problem, polarization, spatial hole burning, ring cavity, single longitudinal mode, IR laser, green laser, thermally induced birefringence
統計
Statistics
本論文已被瀏覽 5744 次,被下載 4064
The thesis/dissertation has been browsed 5744 times, has been downloaded 4064 times.
中文摘要
中文摘要

單縱模雷射具有頻率穩定及雜訊小等優點,可用來做精密量測、檢測定位等高附加價值之應用;產生單縱模雷射有許多不同的技術,例如在線型共振腔腔內加入其他光學元件或是以環形共振腔取代線型共振腔;文獻上環形共振腔是目前單縱模技術中最穩定的方法。
本研究目的主要是在設計一套結構簡單、成本低之單縱模紅外光與綠光雷射,因此開發出以兩面球面鏡做出雙鏡式立體環形共振腔單縱模紅外光與綠光雷射之系統。而在本系統中藉由單方向之控制,使得雷射光在環形共振腔內得以行進波方式前進,所以不會產生如線形共振腔因駐波所造成之空間燒孔效應而可避免所謂的綠光問題。
在本論文介紹雙鏡式共振腔之穩定性,以及雙鏡式環型共振腔之應用,並說明如何達成雙鏡式環形共振腔單縱模紅外光與綠光雷射輸出機制;由於腔內的極化狀態會影響倍頻綠光的輸出功率,因此深入探討熱致雙折射效應以及環形共振腔結構所造成的極化改變:包括非共平面所造成的極化旋轉、斜角入射所造成的影響。並對雙鏡式環型共振腔單縱模紅外光與綠光雷射之特性做一量化的研究。
本實驗架構具有體積小、元件小、設計簡單之特性,可以產生穩定之單縱模雷射輸出,非常具有產品開發的價值。
Abstract
Abstract

Single frequency laser has the advantages of high stability in frequency and low noise. Therefore, single frequency laser is now widely used in applications, such as high precision measurement, holography and data storage.
Attempts to generate second harmonic radiation using a linear cavity have typically resulted in significant amplitude fluctuations due to longitudinal mode coupling. Various techniques have been proposed for solving the so called “green problem” to achieve single longitudinal mode operation, such as inserting optical component in the conventional linear cavity or use ring cavity instead of linear cavity. Uni-directional ring cavity has shown to be the most robust method for producing single frequency laser.
The purpose of this study is to develop compact and low-cost single frequency IR and green lasers. A novel symmetrical two-mirror figure “8” ring cavity is developed. Instead of using several laser mirrors for beam deflection, this ring laser system employs only two spherical mirrors to form the laser cavity for traveling wave oscillation and eliminates “spatial hole burning” caused by the standing wave operation. In this thesis, we use two-mirror figure “8” ring cavity for the generation of single frequency IR and green lasers.
The polarization status is crucial for high efficient intracavity frequency doubling. The polarization evaluation in a nonplanar and reentrant ring cavity is characterized by measuring the thermally induced linear and circular birefringence and analyzing the polarization rotation due to cavity configuration.
We have demonstrated a 2-mirror figure “8” ring cavity which is compact and has few optical elements. The stable single frequency laser output of our ring cavity promises to make the design widely applicable to solid-state lasers.
目次 Table of Contents
目 錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 ix
第一章 緒論 1
第二章 單縱模紅外光與綠光雷射之基本原理 4
2.1 Nd:YAG與Nd:YVO4雷射晶體 4
2.2 腔內倍頻之工作原理 9
2.3 空間燒孔效應 20
2.4 綠光問題 21
2.5 環形共振腔之文獻回顧 23
2.6 單縱模紅外光與綠光雷射之基本原理 25

第三章 雙鏡式環型共振腔之特性 27
3.1 雙鏡式共振腔穩定性探討 27
3.2 雙鏡式立體環形共振腔單縱模紅外光
與綠光雷射之架構 38
3.3 光模態匹配 41
3.4 光束行進方向之控制 46
3.5 特性量測 52
3.6 雙鏡式環形共振腔之應用 55


第四章 雙鏡式環形共振腔單縱模雷射 59
4.1 雙鏡式環形共振腔紅外光雷射之特性量測 59
4.2 影響雙鏡式環形共振腔輸出極化之因素 65
4.2.1 熱致雙折射效應 66
4.2.2 非共平面光束路徑所造成的極化影響 80
4.2.3 斜向入射所造成的極化影響 82
4.3 雙鏡式環形共振腔之極化量測 83
4.4 綠光雷射效率之比較 91
4.5 雙鏡式環形共振腔單縱模綠光雷射之特性 93

第五章 結論 96

參考文獻 99
中英對照 101
參考文獻 References
參考文獻

[1]R. L. Byer, “Diode laser-pumped solid-state lasers, ” Science, vol. 239, No. 4841, pp. 742-747, 1988.
[2]D. W. Anthon, D. L. Sipes, T. J. Pier ,and M. R. Ressel, “Intracavity doubling of CW diode-pumped Nd:YAG lasers with KTP,” IEEE J. Quantum Electronics, vol. 28, No. 4, pp. 1148-1157, 1992.
[3]G. E. James and E. M. Harrell, “Elimination of chaos in an intracavity-doubled Nd:YAG laser, ” Opt. Lett., vol. 15, pp. 1141-1143, 1990.
[4]T. J. Kane and R. L. Byer, “Monolithic unidirectional single-mode Nd:YAG ring laser”, Opt. Lett., vol. 10, pp. 65-67, 1985.
[5]J. L. Nightingale, U. S. Patent 5,136,597,(1992).
[6]M. D. Selker, T. J. Johnston, G. Frangineas, J. L. Nightingale, and D. K. Negus, “> 8.5 watts of single frequency 532 nm light from a diode pumped intra-cavity doubled ring laser,” Conf. on Lasers and Electro-Optics (CLEO), paper CPD-21, CA, U.S.A., 1996.
[7]翁義龍,“腔內倍頻之被動式Q開關藍光雷射”,國立中山大學光電工程研究所碩士論文,2000.
[8]Walter Koechner, “Solid-State Laser Engineering,” 4th ed. Springer,ch.7,1996.
[9]S. Z. Kurtev, O. E. Denchev, and S. D. Savov, “Effects of thermally induced birefringence in high-output-power electro-optically Q-switched Nd:YAG lasers and their compensation,” Appl. Opt., vol. 32, pp. 278-285, 1993.
[10]H. Kiriyama, T. Yoshida, N. Srinivasan, H. Matsui, K. Nishida, M. Yamanaka, Y. Izawa, T. Yamanaka, and S. Nakai, “Thermal birefringence effect on the performance of a laser-diode pumped solid-state laser,” Jpn. J. Appl. Phys., vol. 36, pp. 7197-7201, 1997.
[11]P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich,”Generation of optical hamonics, “ Phys.Rev.Lett, vol. 7, pp. 118, 1961.
[12]A. Yariv, “Optical Electronics in Modern Communications,” New York Oxford, ch.8, 1997.
[13]R. C. Eckardt, H. Masuda, Y. X. Fan, and R. L. Byer,“Absolute and relative nonlinear optical coefficients of KDP, KD*P, Ba2O4, LiIo3, MgO:LiNbO3, and KTP measured by phase-matched second-hamonic generation,” IEEE J. Quantum Electronics, JQE-26, pp. 922-933, 1990.
[14]J. L. Nightingale, in Compact Blue-Green Lasers, 1993 Technical Digest Series, Optical Society of America, Washington,D. C. vol. 2, P. 443.
[15]T. Baer, “large-ampltitude fluctuations due to longitudinal mode coupling in diode-pumped intracaity-doubled Nd:YAG, “ J. Opt. Soc., vol. 3, No. 9, 1986.
[16]V. Magni, G.. Cerullo, S. D Silvestri, O. Svelto, L. J. Qian, and M. Danailov,“Intracavity frequency doubling of a cw high-power TEM00 Nd:YLF laser,“ Optical Society America, vol. 18, No. 24, pp. 2111-2113, 1993.
[17]M. Oka and S. Kubota, “Stable intracavity doubling of orthogonal linearly polarizaed modes in diode-pumped Nd:YAG lasers”, Opt. Lett., vol. 13, No. 10, pp. 805-807, 1988.
[18]D. A. Draegert, “Efficient single-longitudinal-mode
Nd:YAG laser,” IEEE J. Quantum Electronics,vol. QE-8, No. 2, pp. 235, 1972.
[19]W. Culshaw, J. Kannelaud,and J. E. Peterson, “Efficient frequency-doubled single-frequency Nd:YAG laser, “ IEEE J. Quantum Electronics, vol. QE-10,pp. 253-263, 1974.
[20]H. Nagai, M. Kume,I. Ohta, H. Shimizu, and M. Kazumura,”Low-noise operation of a diode-pumped intracavity-doubled Nd:YAG laser using a Brewster plate,” IEEE J. Quantum Electron, vol. 28, pp. 1165-1167, 1992.
[21]V. Evtuhov and A. E. Siegman, “A 'twisted-mode' technique for obtaining axially uniform energy density in a laser cavity,” Appl. Opt.,vol. 4,pp. 142-143, 1965.
[22]T. Taira, A. Mukai, Y. Nozawa, and T. Kobayashi, “Single-mode oscillation of laser-diode pumped Nd:YVO4 microchip lasers,” Opt. Lett. , vol. 16, pp. 1955-1957, 1991.
[23]R. S. Afzal and Anthony. W. Yu, “Single-mode high-peak-power passively Q-switched diode-pumped Nd:YAG laser ”, Opt. Lett. , vol. 22, No. 17, pp. 1314-1316, 1997.
[24]I. Freitag, A. Tunnermann, and H. Welling, “Passive Q-switched Nd:YAG ring lasers with high average output power in single-frequency operation”, Opt. Lett., vol. 22, No. 10, pp. 706-708 , 1997.
[25]G. T. Maker and G. P. A. Malcolm, “Single-frequency diode-pumped Nd:YAG ring laser with no intracavity elements”, Opt. Lett., vol. 18, No. 21, pp. 1813-1815, 1993.
[26]D. Chen, C. L. Fincher, D. A. Hinkley, R. A. Chodzko, T. S. Rose,and R. A. Fields, “Semimonolithic Nd:YAG ring resonator for generating CW single-frequency output at1.06mm,” Opt.Lett., vol. 20, pp. 1283-1285, 1995.
[27]K. I. Martin, W. A. Clarkson, and D. C Hanna, “3W of single-frequency doubling of a diode-bar-pumped Nd:YAG ring laser,” Opt. Lett., vol. 21, No. 12, pp. 875-877, 1996.
[28]H. Z. Cheng, P. L. Huang, S. L. Huang, and F. J. Kao, “Novel reentrant 2-mirror ring resonator for generation of single frequency green laser”, Opt. Lett., vol. 25, pp. 542-544, 2000.
[29]A. E. Siegman, “Lasers ”, University Science Books, California, 1986.
[30]A. C. Nilsson, E. K. Gustafson,and R. L. Byer, “Eigenpolarization Theory of Monolithic Nonplanar Ring Oscillators”, IEEE J. Quantum Electronics, vol. 25, No. 4, pp. 767-790, 1989.
[31]Hecht, “ OPTICS,” 3rd ed. ADDISON WESLEY,ch.8,1998.
[32]P. L. Huang, C. J. Weng, H. Z. Cheng, and S. L. Huang, “A Passively Q-Switched Laser Constructed by 2-Mirror Reentrant Ring Cavity,” Jap. J. Appl. Phys., vol. 40, pp. 508-510, 2001.
[33]H. W. Kogelnik, E. P. Ippen, R. Dienes,and C. V. Shank, “Astigmatically compencsated cavities for CW dye lasers,” IEEE J. Quantum Electronics,Vol. QE-8,No.3,pp. 373-379, 1972.
[34]C. J. Weng, P. L. Huang,H. Z. Cheng, and S. L. Huang, “Charcterization and analysis of polarization in a nonplanar ring laser cavity,” International Photonics Conference IPC 2000, pp. 422-424, Hsinchu, Taiwan, Republic of China, 2000.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code