Responsive image
博碩士論文 etd-0627102-215906 詳細資訊
Title page for etd-0627102-215906
論文名稱
Title
捷運供電系統規畫與諧波改善策略
Power System Planning and Harmonic Mitigation of Mass Rapid Transit Systems
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
138
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-14
繳交日期
Date of Submission
2002-06-27
關鍵字
Keywords
交流/直流系統負載潮流分析、非控制型整流變壓器模型、動態規畫、隨機諧波潮流分析
uncontrolled rectifier, AC/DC load flow analysis
統計
Statistics
本論文已被瀏覽 5723 次,被下載 26
The thesis/dissertation has been browsed 5723 times, has been downloaded 26 times.
中文摘要
本論文主要探討台北捷運路網供電系統的供電品質,藉由合適的供電系統之主變壓器容量規畫策略與濾波器之設計,來改善供電系統主變壓器之負載率,並有效地抑制系統的諧波污染,以提升捷運系統之營運績效及電力品質。
本論文首先針對捷運供電系統規畫所需要的系統分析程式,如交流/直流負載潮流及諧波分析程式,整合成一套完整的分析工具。其中為了更精確地掌握列車運行特性,在交流/直流負載潮流分析過程中,考慮第三軌電壓變化對感應機運轉特性的影響,改善傳統以第三軌電壓為固定值之電聯車耗電模擬分析。配合目前捷運系統所使用整流變壓器組的模型,本論文提出以沒有中間相變壓器的並聯12脈波非控制型整流變壓器組的數學模型,應用於交流/直流負載潮流及諧波分析的程式中,以改善交流/直流負載潮流及諧波分析模擬結果的精確性,強化捷運系統規畫設計的效能。
傳統捷運系統主變壓器容量規畫皆以目標年負載作為基礎,導致過當的投資與主變壓器負載率偏低之缺失,本論文提出根據逐年尖峰時段負載量及不同的備載容量需求,求解最小化的各種等效成本,以動態規畫法推導出主變壓器容量之合適規畫策略。在考慮主線影響列車行駛的各種操作阻力及營運策略下,利用列車運動方程式執行單一列車耗電模擬,求解列車行駛於主線上在任一快照時間的距離及機械功率需求。依據台北捷運路網所訂定各線之通車時程與推估之逐年旅運量預測值,進行供電系統之交流/直流負載潮流分析,計算出各主變電站的逐年尖峰時段負載量。將動態規畫法每一階段變壓器數量組合求出,定義所有可行解之主變壓器容量組態的能量損失成本、變壓器容量投資年成本及可靠度等效成本。根據電腦模擬分析結果可發現,本論文所提出捷運路網合適的主變壓器容量規畫,可確實改善主變壓器之投資成本效益。
由於捷運系統中牽引動力變電站隨著電聯車不同運轉模式,而具有隨機變化的負載特性,為改善諧波失真問題,本論文提出隨機諧波電壓潮流方法,應用所發展的交流/直流負載潮流及諧波分析程式,計算出各牽引變電站交流側匯流排的負載量及各級注入系統的諧波電流,根據週期時間內牽引動力變電站各級的諧波電流平均值及其標準差,經隨機諧波電壓潮流模擬,求出匯流排各級諧波電壓的期望值與標準差,進而求得各匯流排的諧波電壓失真率,可更精確地估算諧波電壓失真率變化範圍,而得到更具意義之諧波分析結果,做為抑制諧波污染的參考。本論文將根據諧波分析結果,探討不同諧波失真改善策略,其中以裝設被動式濾波器為主,考慮系統的共振頻率,定義濾波器容量成本,與各種運轉限制條件,滿足隨機諧波失真限制條件及合理的虛功率補償量,以非線性規畫法,求解尖離峰時段最小成本之被動式濾波器裝設級數及容量規畫,以濾除主要的諧波電流,再並聯一小容量的主動式濾波器,濾除被動式濾波器未能完全消除之高次諧波,以改善捷運供電系統因諧波失真所造成的電力品質問題,達到諧波電流抑制的目的。

Abstract
This dissertation is to investigate the power system service quality of a Mass Rapid Transit (MRT) system and derive the proper transformer planning to enhance the system operation efficiency. The transformer loading factor is improved by proper capacity planning by considering the power demand according to the growth of ridership. To mitigate the harmonic distortion, the installation location and capacity of harmonic filters are designed and verified by computer simulation.
In this dissertation, the software programs for the AC/DC load flow study and harmonic analysis have been developed and integrated to simulate the MRT power system. To enhance the accuracy of computer simulation for the system operation with multiple trains on the main lines, the effect of voltage fluctuation to the traction effort of a train set is considered in the AC/DC load flow analysis. The mathematical model of 12-pulse uncontrolled rectifiers without interphase transformers has been derived and implemented in the programs to obtain more accurate simulation results.
To achieve better cost effective capacity planning of main transformers, the unit commitment is applied to derive the optimal transformer capacity to meet the annual peak demand and provide reserve for service reliability. The power consumption of an MRT system is varied with the train operation modes and the route gradient, curvature of MRT networks. The motion equation of train sets has been applied to find the dynamic power consumption and travel distance for each time snapshot. The AC/DC load flow analysis is performed to find the annual power loading of traction substations and whole Taipei MRT network. The energy loss, investment cost of main transformers, and the system service reliability are used to define the equivalent cost of all feasible states for each dynamic programming stage. According to the computer simulation, significant cost saving has been obtained by the proposed methodology for transformer capacity planning of Taipei MRT network.
Due to the dynamic load behavior of train sets, the stochastic harmonic distortion of an MRT system is simulated. The mathematical model of the 12-pulse uncontrolled rectifiers without interphase transformers is considered in the harmonic load flow analysis to solve the power demand and harmonic injection currents at traction substations for each time snapshot. According to the mean values and standard deviation of injection harmonic currents, the stochastic harmonic load flow analysis is executed to find the average value and the confidential interval of harmonic voltage distortion for all system buses. By this method, the system voltage harmonic distortion can be evaluated more accurately to provide better guidance for the strategy of harmonic mitigation. According to the results of the stochastic harmonic load flow, different strategies of harmonic distortion mitigation are investigated. Both the fixed type and switching type of passive filters are considered to be implemented. The cost function of filter investment and the harmonic distortion are used in the objective function by considering the regulation of harmonic distortion and system voltages as the constraints. By performing the nonlinear programming, the proper capacity of harmonic filters for each harmonic order and the corresponding switching time of unit commitment is determined. To further improve the power quality, the hybrid filter is also proposed for better distortion mitigation. The analysis of distortion mitigation by harmonic filters are performed to demonstrate the effectiveness of the hybrid filters to improve the power quality of MRT systems.

目次 Table of Contents
中文摘要 i
英文摘要 iii
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1.1研究背景及目的 1
1.2研究方法與步驟 9
1.3論文章節概要 12
1.4主要貢獻 14
第二章 捷運供電系統 16
2.1 前言 16
2.2 捷運供電系統架構 16
2.2.1 主變電站 17
2.2.2 牽引動力變電站 18
2.3電聯車推進系統 19
2.4電聯車運動方程式 25
2.5電聯車電能消耗模擬 27
第三章 交流/直流系統負載潮流分析 30
3.1 前言 30
3.2整流變壓器模型之基本假設 30
3.3沒有IPT的並聯12脈波非控制型整流變壓器模型之推導 32
3.3.1操作模式1 33
3.3.2操作模式3 35
3.3.3操作模式5 37
3.3.4模擬分析 40
3.4交流/直流系統之負載潮流分析 42
3.5台北捷運系統淡水線供電系統分析 47
3.6本章結論 53
第四章 捷運系統主變壓器容量規畫 54
4.1 前言 54
4.2捷運路網逐年負載量估算 56
4.2.1逐年旅運量與班距之運算 56
4.2.2逐年負載量模擬 60
4.3主變壓器規畫各項成本之計算 63
4.4台北捷運路網主變壓器容量之動態規畫 65
4.4.1變壓器規畫模式 66
4.4.2動態規畫 68
4.4.3變壓器規畫之步驟 69
4.5台北捷運路網主變壓器組合動態規畫之比較 71
4.5.1狀況一:不考慮可靠度等效成本之備載容量規畫 71
4.5.2狀況二:考慮可靠度等效成本之變壓器動態規畫 72
4.6本章結論 75
第五章 捷運電力系統隨機諧波潮流分析 76
5.1 前言 76
5.2捷運系統元件之諧波模型 79
5.3諧波失真分析 82
5.4隨機諧波潮流 84
5.4.1隨機負載模型原理 84
5.4.2隨機諧波潮流模型建立 85
5.5實例模擬分析 86
5.6本章結論 94
第六章 捷運電力系統諧波失真改善策略 95
6.1 前言 95
6.2頻率掃描 96
6.3被動式濾波器裝置容量最佳規畫 98
6.3.1被動式濾波器設計 99
6.3.2實例模擬分析 103
6.4混合式濾波器規畫 107
6.4.1 主動式濾波器工作原理 108
6.4.2 主動式濾波器架構 109
6.5模擬結果 111
6.6本章結論 117
第七章 結論與未來研究方向 118
7.1結論 118
7.2未來研究方向 120
參考文獻 122
附錄A 整流變壓器模型之推導 126
參考文獻 References
[1] 何湘麟,直流牽引動力分析,捷運技術,第六期,第75∼81頁,民國八十一年。
[2] EMM, User Manual for the Transportation System Energy Management Model, Rail System Center of Carnegie-Mellon University, Pittsburgh, July 1986.
[3] H. C. J. Cornel and V. I. John, “QENS-An Enhanced Version of the Electric Network Simulator Program,” IEEE Trans. on Vehicular Technology, Vol. 40, No. 1, February 1991, pp. 273-279
[4] DAPPER, Distribution Analysis for Power Planning Evaluation and Reporting, SKM System Analysis Inc., U.S.A., 1996.
[5] H. Sato and J. Arrillaga, “Improved Load Flow Techniques for AC/DC Systems,” IEE Proceedings, Vol. 116, No. 4, 1969, pp. 525-532.
[6] E. W. Kimbak, Direct Current Transmission, Vol. 1, John Wiley & Sons, New York, 1971.
[7] M. M. El-Marsafaway and R. M. Mather, “A New, Fast Techniques for Load Flow Solution of Integrated Multiterminal DC/AC Systems,” IEEE Trans. on Power Apparatus and Systems, Vol. PAS-99, No. 1, Jan./Feb. 1980, pp. 246-255.
[8] M. M. Hassan and E. K Stanex, “Analysis Techniques in AC/DC Power Systems,” IEEE Trans. on Industry Applications, Vol. IA-17, No. 5, September/October 1981, pp. 473-480.
[9] D. J. Tylavsky and F. C. Trutt, “The Newton-Raphson Load Flow Applied to AC/DC System with Commutation Impedance,” IEEE Trans. on Industry Applications, Vol. IA-19, No. 6, Nov./Dec. 1983, pp. 940-948.
[10] T. Smed, G. Andersson, and L. L. Grigsby, “A New Approach to AC/DC Power Flow,” IEEE Trans. on Power Systems, Vol. 6, No. 3, Aug. 1991, pp. 1238-1244.
[11] Y. S. Tzeng, R. N. Wu, and N. Chen, “Unified AC/DC Power Flow for System Simulation in DC Electrified Transit Railways,” IEE Proceedings-Electric Power Applications, Vol. 142, No. 6, 1995, pp. 345-354.
[12] Y. S. Tzeng, R. N. Wu, and N. Chen, “A Detailed R-L Fed Bridge Converter Model for Power Flow Studies in Industrial AC/DC Power Systems,” IEEE Trans. on Industrial Electronics, Vol. 42, No. 5, Oct. 1995, pp. 531-538.
[13] 曾乙申,台北捷運工程系統淡水-新店線之供電系統之負載潮流與諧波分析,台灣工業技術學院博士論文,民國八十四年。
[14] F. C. Trutt and L. A. Morley, “Mine Power System Analysis,” IEEE Trans. on Industry Applications, Vol. IA-24, No. 5, Sep./Oct. 1983, pp. 839-845.
[15] O. N. Acosta, “Interphase Transformer for Multiple Connected Power Rectifiers,” IEEE Trans. on Industry General Applications, Vol. IGA-1, Nov./Dec. 1965, pp. 423-428.
[16] D. J. Perreault and J. G. Kassakian, “Effects of Firing Angle Imbalance on 12-Pulse Rectifiers with Interphase Transformers,” IEEE Trans. on Power Electronics, Vol. PE-10, No. 1, May 1995, pp. 257-262.
[17] F. T. Bennell, “Current Equalising Transformer for Current Balance in Parallel-Connected 12-Pulse Converter,” IEE Proceedings Electric Power Application, Vol. 135, No. 2, March 1988, pp. 85-90.
[18] J. K. Hall, J. G. Kettleborough, and A. B. M. J. Razak, “Parallel Operation of Bridge Rectifiers without an Interphase Transformer Reactor,” IEE Proceedings-Electric Power Applications, Vol. 137, No. 2, March 1990, pp. 125-140.
[19] Y. S. Tzeng, N. Chen, and R. N. Wu, “Modes of Operation in Parallel-Connected 12-Pulse Uncontrolled Bridge Rectifiers without an Interphase Transformer,” IEEE Trans. on Industrial Electronics, Vol. 44, No. 3, June 1997, pp. 344-355.
[20] Y. S. Tzeng, “Harmonic Analysis of Parallel-Connected 12-Pulse Uncontrolled Rectifier without an Interphase Transformer,” IEE Proceedings-Electric Power Applications, Vol. 145, No. 3, May 1998, pp. 253-260.
[21] J. F. Dopazo, O. A. Klitin, and A. M. Sasson, “Stochastic Load Flows,” IEEE Trans. on Power Apparatus and Systems, Vol. PAS-94, No. 2, Mar./Apr. 1975, pp.299-309.
[22] K. Li, “State Estimation for Power Distribution System and Measurement Impacts,” IEEE Trans. on Power Systems, Vol. 11, No. 2, May 1996, pp. 911-916.
[23] G. J. Anders, Probabilistic Concepts in Electric Power System, John Wiley & Sons, New York, 1990.
[24] Y. Y. Hong and L. H. Lee, “Stochastic Voltage-Flicker Power Flow,” IEEE Trans. on Power Delivery, Vol. 15, No. 1, Jan. 2000, pp. 407-411.
[25] C. Kawann and A. E. Emanuel, “Passive Shunt Harmonic Filters for Low and Medium Voltage: A Cost Comparison Study,” IEEE Trans. on Power Systems, Vol. 11, No. 4, Nov. 1996, pp. 1825-1831.
[26] 江榮城,電力品質實務(一),全華科技圖書股份有限公司,民國八十九年。
[27] 顏義和,電力系統諧波問題分析及改善策略之研究,中山大學博士論文,民國八十一年。
[28] 何金滿,王村竹,捷運供電系統諧波分析,第二十一屆電力研討會論文集,pp. 290-295。
[29] H. Akagi, “Active and Hybrid Filters for Power Conditioning,” Proceedings of the 2000 IEEE International Symposium on Industrial Electronics, Vol. 1, 2000, pp. 26-36.
[30] H. Fujita and H. Akagi, “A Practical to Harmonic Compensation in Power System-Series Connection of Passive and Series Active Filters,” IEEE Trans. on Industry Applications, Vol. 27, No. 6, 1991, pp. 1020-1025.
[31] H. Akagi and H. Fujita, “A New Power Line Conditioner for Harmonic Compensation in Power Systems,” IEEE Trans. on Power Delivery, Vol. 10, No. 3, 1995, pp. 1570-1576.
[32] 郭鴻熹,三相並聯型主動式電力濾波器之分析與控制,台灣科技大學博士論文,民國九十年。
[33] IEEE Std. 519-1992, “IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems,” April 1993.
[34] PSIM, PSIM User Manual, Powersim Technologies Inc., December 1999.
[35] 黃森榮,台北高運量捷運系統供電系統概論,經濟部工業局八十四年度工業技術人才培訓計畫講義,民國八十四年。
[36] Siemens, Metro Taipei Tamshui/Hsintein Lines Contract 303, HV-Final-System Study, Erlangen, Dec. 1991.
[37] Power and Traction Subsystem Running Maintenance Manual, AEG Westinghouse Transportation Systems Inc., Pittsburgh, July 1992.
[38] M. H. Rashid, Power Electronics Circuits, Devices, and Applications, Second Edition, Prentice Hall, 1988
[39] C. S. Chen, H. J. Chuang, and J. L. Chen, “Analysis of Dynamic Load Behavior for Electrified Mass Rapid Transit Systems,” 1999 IEEE/IAS, Annual Meeting, Phoenix, Oct. 3-7, 1999, pp. 992-998.
[40] 吳國祥,交流/直流系統之界面-整流變壓器組之模型推導與應用,台灣科技大學碩士論文,民國八十六年。
[41] 2011及2021年旅客成長量,捷運局一處。
[42] 淡水線進出站人數統計表,捷運公司。
[43] Distribution Technology, Taiwan Power Company, 1993.
[44] L. C. Leung and S. K. Khator, “Transformer Procurement and Relocation at a Large Electric Utility: A Mixed 0-1 Linear Programming Model,” IEEE Trans. on Power Systems, Vol. 10, No. 2, May 1995, pp. 957-963.
[45] R. N. Allan, R. Billinton, I. Sjarief, and K. S. So, “A Reliability Test System for Educational Purposes – Basic Distribution System Data and Result,” IEEE Trans. on Power Systems, Vol. 6, No .2, May 1991, pp. 813-820.
[46] R. E. Brown and J. R. Ochoa, “Distribution System Reliability: Default Data and Model Validation,” IEEE Trans. on Power Systems, Vol. 13, No. 2, May 1998, pp. 704-709.
[47] M. Sniedovich, Dynamic Programming, New York: Marcel Dekker, 1991.
[48] 巫聰獻,考慮用戶負載特性之配電變壓器規畫模式,中山大學博士論文,民國八十七年。
[49] LINGO, LINGO User’s Guide, LINDO Systems Inc., Feb. 1999.
[50] A. A. Mahamoud and R. D. Shultz, “A Method for Analyzing Harmonic Distribution in AC Power Systems,” IEEE Trans. on Power Apparatus and Systems, Vol. PAS-101, No. 6, June 1982, pp. 1815-1824.
[51] M. F. McGranaghan, R. C. Dugan, J. A. King and W. T. Jewell, “Distribution Feeder Harmonic Study Methodology,” IEEE Trans. on Power Apparatus and Systems, Vol. PAS-103, No. 12, Dec. 1984 pp. 3663-3671.
[52] IEEE Std. 519-1981, “IEEE Guide for Harmonic Control and Reactive Compensation of Static Power Converters,” New York, April 1981.
[53] I. S. Sokolinkoff and R. M. Redheffer, Mathematics of Physics and Modern Engineering, McGraw-Hill, 1966.
[54] H. Akagi, “Trends in Active Power Line Conditioners,” IEEE Trans. on Power Electronics, Vol. 9, No. 3, May 1994, pp. 263-268.
[55] 周宏亮,吳晉昌,吳坤德,陳佐睦,張家豪,被動式電力濾波器與混合式電力濾波器並聯運轉之研究,第二十二屆電力研討會論文集,pp. 1523-1527.
[56] 陳金鈴,林彥宏,蔡和昌,混合式電力濾波器,第二十屆電力研討會論文集,pp. 142-146。

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.184.214
論文開放下載的時間是 校外不公開

Your IP address is 18.218.184.214
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code