Responsive image
博碩士論文 etd-0627103-123838 詳細資訊
Title page for etd-0627103-123838
論文名稱
Title
噻吩共聚體之發光行為
Light-emitting properties of thiophene block copolymer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-06-09
繳交日期
Date of Submission
2003-06-27
關鍵字
Keywords
光致發光光譜、單一發光團發光、吸收光譜、聚集
photoluminescences spectrum, aggregares, absorption spectrum, single-chromophore emission
統計
Statistics
本論文已被瀏覽 5637 次,被下載 1807
The thesis/dissertation has been browsed 5637 times, has been downloaded 1807 times.
中文摘要
本篇主要研究為聚茀及聚塞吩交替式共聚物、聚荼與聚塞吩交替式共聚物以及聚苯乙烯-聚塞吩-聚苯乙烯三段式共聚物等此類共軛高分子在不同溫度熱處理程序,所形成不同的分子結構排列對其發光性質的影響,以及在稀薄溶液中,共軛高分子形成分子鏈間規則聚集,對其發光波長的影響。這些共軛高分子為不同主鏈結構,接上單取代或雙取代的長烷基側鏈,以及相同主鏈但接上不同性質的側鏈。主要研究工具為偏光顯微鏡、X光繞射儀、紫外光-可見光光譜儀及光致發光光譜儀、光散射儀。結果顯示聚茀-聚噻吩系列共聚物在稀薄溶液中會產生因分子鏈間規則聚集而產生新種類的發光。但聚荼系列與聚噻吩三段式共聚物並無觀察到此種類的發光。
Abstract
Structural evolution and its effect on optical absorption/emission behavior of fluorene-thiophene conjugated alternate copolymers and naphthalene-thiophene conjugated alternate copolymers and polystyrene-poly-3octylthiophene-polystyrene triblock copolymer
of upon isothermal heat treatment at elevated temperatures, and the well π-π stack at interchain species (ordered aggregates) be formed in dilute solutions and its effect the UV-vis and PL spectra. These conjugated polymer with mono- or disubstituted with alkyl side chain and with alkyl or alkoxyl flexible side-chains. This studied by means of a combination of polarized light microscopy, x-ray diffraction, ultraviolet-visible spectroscopy, light scattering spectroscopy and photoluminescence spectroscopy. According to the results of the experiment, the fluorene-based polymer can be observed emission from order aggregate in the solution state, but not found in naphthalene-based and triblock copolymer.
目次 Table of Contents
Table of Contents
Chapter 1. Introduction 1
1.1. Conjugated polymers with flexible side-chains 1
1.2. Review of thiophene-based conjugated polymers 2
1.3. Luminescence theory 4
1.3.1. Optical absorption 5
1.3.2. Fluorescence and phosphorescence emission process 5
1.3.3. Photoluminescence spectrum 5
1.4. Excimers and Aggregate emission 5
1.5. Objective of this work 6
Chapter 2. Poly (fluorene-alt-thiophene) copolymer 8
2.1. Introduction 8
2.2. Experimental section 9
2.2.1. Material and Instruments 9
2.2.2. Specimen preparation 10
2.3. Results and discussion 11
2.3.1. Poly (2,7-(9,9-dihexylfluorene)-co-alt-2, 5-(3,4-didecylthiophene) 11
2.3.1.1. Optical properties of dilute solutions………………………..11
2.3.1.2. Light scattering results of NMP p-xylene solution………….13
2.3.1.3. Optical properties of dilute solution cast film…………...….14
2.3.1.4. Optical properties in the solid state 14
2.3.1.5. Summary………………………………………………………15
2.3.2. Poly (2,7-(9,9-dihexylfluorene)-co-alt-2, 5´-(3,3-didecyl-2,2-bithiophene)……………………………………...16
2.3.2.1. Light emitting properties ……………………………………16
2.3.2.2. Light scattering results of NMP and p-xylene solution 17
2.3.2.3. Optical properties of dilute solution cast film 17
2.3.2.4. Optical properties in the solid state………………………...18
2.3.2.5. Summary………………………………………………….….18
2.3.3. Concluding remarks…………………………………….………….…..19
Chapter 3. Poly (naphthalene-alt-thiophene) copolymer 44
3.1. Introduction……………………………………………………………….…...44
3.2. Experimental 44
3.2.1. Materials and Instruments 44
3.2.2. Specimen preparation 44
3.3. Results and discussion 45
3.3.1. Poly (1,4-ethynylnaphthalene)-co-alt-(2,5-ethynylhexylthiophene) ...45
3.3.1.1. Optical properties of dilute solutions …………………………….45
3.3.1.2. Optical properties of dilute solution cast film …………………...47
3.3.1.3. Optical properties in the solid state………….……………….…..47
3.3.1.4. Summary……………………………………………………………48
3.3.2 poly [1,4-ethynylnaphthalene]-co-alt- (2,5-ethynylhexoxythiophene)..49
3.3.2.1. Optical properties of dilute solutions …………………………….49
3.3.2.2. Optical properties of dilute solution cast film …………………...50
3.3.2.3. Optical properties in the solid state…………………………..…...51
3.3.2.4. Summary……………………………………………………………51
3.3.3. Concluding remarks………………………………………………...….52
Chapter 4. Polystyrene-poly(-octylthiophene)-polystyrene copolymer……..…..72
4.1. Introduction………………………………………………………………….....72
4.2. Experimental 72
4.2.1. Materials and Instruments 72
4.2.2. Sample fabrication……………………………………………………...73
4.3. Results and discussion…………………………………………………………73
4.3.1. PS-P3OT-PS (1:1:1)……………………………………………….…73
4.3.1.1 Optical properties of dilute solution…………………………….73
4.3.1.2 Optical properties of cast film…………………………………..74
4.3.2. PS-P3OT-PS (3:2:3)……………………………………………….…75
4.3.2.1 Optical properties of dilute solution…………………………….75
4.3.2.2 Optical properties of cast film…………………………………..76
4.4. Concluding remarks…………………………………………………………77
Chapter 5. conclusions………………………………………………………………78
References…………………………………………………………………………...92

List of Figures
Figure 1-1. (a)Interdigitation Model (b)End to End Model for P3ATs. 7
Figure 1-2. One form of a Jabłoński diagram. 7
Figure 2-1. Chemical structure of ( a ) FHDDTH, ( b ) FHBDTH………………21
Figure 2-2. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute FHDDTH/ p-xylene solution during room-temperature standing up to ca. 55 days, followed by 5-min sonification at 43 kHz at the end of the 55th day……………………22
Figure 2-3. Variations of normalized emission (a) excited at 440 nm spectra of the dilute FHDDTH/ p-xylene solution………………………………23
Figure 2-4. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute FHDDTH/ NMP solution during room-temperature standing up to ca. 55 days, followed by 5-min sonification at 43 kHz at the end of the 55th day……………………24
Figure 2-5. Variations of normalized emission (a) excited at 440 nm spectra of the dilute FHDDTH/ NMP solution…………………………………..25
Figure 2-6. Particle size and UV/PL spectrum of FHDDTH by different NMP concentration…………………………………………………………..26
Figure 2-7. Particle size and UV/PL spectrum of FHDDTH by different p-xylene concentration……….………………………………………………….27
Figure 2-8. Variations of normalized absorption (a) and emission (b, excited at 380 nm) spectra of the dilute FHDDTH/ p-xylene solution cast film during room temperature standing up to ca. 55 days……………….28
Figure 2-9. Variations of normalized absorption (a) and emission (b, excited at
380 nm) spectra of the dilute FHDDTH/NMP solution cast film during room temperature standing up to ca. 55 days……………….29
Figure 2-10. X-ray diffraction profiles of solution cast FHDDTH film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta…………………………………..30
Figure 2-11. Normalized absorption and emission spectra of solution-cast FHDDTH film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history exactly parallels that of the XRD study in Figure. 2-10……………………………………………...…………..31
Figure 2-12. Polarized light micrographs of solution-cast FHDDTH film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 95 oC: (a) as-cast film at room temperature, (b) heated to 85 oC, (c) 95 oC, and (d) 28 oC…………….…………………………..32
Figure 2-13. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute FHBDTH/ p-xylene solution during room-temperature standing up to ca. 39 days, followed by 5-min sonification at 43 kHz at the end of the 39th day…………………33
Figure 2-14. Variations of normalized emission (a) excited at 460 nm (b) not normalized, excited at 490 nm) spectra of the dilute FHBDTH/ p-xylene solution…………………………………………………….34
Figure 2-15. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute FHBDTH/ NMP solution during room temperature standing up to ca. 39 days………………..…...35
Figure 2-16. Variations of normalized emission (a) excited at 460 nm (b) not normalized, excited at 490 nm) spectra of the dilute FHBDTH/ NMP solution………………………………………………………..36
Figure 2-17. Particle size and UV/PL spectrum for FHBDTH by different NMP conceatration……………………………………………………….37
Figure 2-18. Particle size and UV/PL spectrum for FHBDTH by different p-xylene conceatration……………………………………………...38
Figure 2-19. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute FHBDTH/p-xylene solution cast film during room temperature standing up to ca. 39days……………..39
Figure 2-20. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute FHBDTH/NMP solution cast film during room temperature standing up to ca. 39days……………..40
Figure 2-21. X-ray diffraction profiles of solution cast FHBDTH film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta………………………………..41
Figure 2-22. Normalized absorption and emission spectra of of solution-cast FHBDTH film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history exactly parallels that of the XRD study in Figure .2-21………………………………………………………….42
Figure 2-23. Polarized light micrographs of solution-cast FHDDTH film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 95 oC: (a) as-cast film at room temperature, (b) heated to 70 oC, (c) 80 oC, and (d) 28 oC…………………………..43
Figure 3-1. Chemical structure of ( a ) PNETE-C6 ( b ) PNETE-OC6…………53
Figure 3-2. Variations of normalized absorption (a) and emission (b, excited at 460 nm) spectra of the dilute PNETE-C6/ p-xylene solution during room-temperature standing up to ca.46 days, followed by 5-min sonification at 43 kHz at the end of the 46th day…………………55
Figure 3-3. Variations of normalized absorption (a) and emission (b, excited at 460 nm) spectra of the dilute PNETE-C6/ NMP solution during room-temperature standing up to ca. 46 days………………………56
Figure 3-4. Dependence of normalized emission spectrum on excitation wavelength of (a) the dilute PNETE-C6/p-xylene solution and (b) the dilute PNETE-C6/NMP solution with additional room-temperature standing of 46 days……………………………………………………57
Figure 3-5. Variations of normalized absorption (a) and emission (b, excited at 450 nm) spectra of the dilute PNETE-C6/NMP solution cast film during room temperature standing up to ca. 46days……………….58
Figure 3-6. Variations of normalized absorption (a) and emission (b, excited at 430 nm) spectra of the dilute PNETE-C6/p-xylene solution cast film during room temperature standing up to ca. 46days……………….59
Figure 3-7. Comparison of emission spectra of PNETE-C6 in the solution versus as cast film (a) p-xylene solution versus p-xylene solution cast film, (b)NMP solution versus NMP solution cast film…………………….60
Figure 3-8. X-ray diffraction profiles of solution cast PNETE-C6 film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta………………………………..…61
Figure 3-9. Normalized absorption and emission spectra of of solution-cast PNETE-C6 film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history exactly parallels that of the XRD study in Figure .3-8……………………………………………………………..62
Figure 3-10. Polarized light micrographs of solution-cast PNETE-C6 film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 190 oC: (a) as-cast film at room temperature, (b) heated to 95 oC, (c) 130 oC, and (d) 180 oC………………………………….…..63
Figure 3-11. Variations of normalized absorption (a) and emission (b, excited at 480 nm) spectra of the dilute PNETE-OC6/ p-xylene solution during room-temperature standing up to ca.70 days…………….64
Figure 3-12. Variations of normalized absorption (a) and emission (b, excited at 480 nm) spectra of the dilute PNETE-OC6/ NMP solution during room-temperature standing up to ca.70 days……………………..65
Figure 3-13. Dependence of normalized emission spectrum on excitation wavelength of (a) the dilute PNETE-OC6/ NMP solution and (b) the dilute PNETE-OC6/ p-xylene solution with additional room-temperature standing of 70 days……………………………66
Figure 3-14. Variations of normalized absorption (a) and emission (b, excited at 450 nm) spectra of the dilute PNETE-OC6/NMP solution cast film during room temperature standing up to ca. 70days……………..67
Figure 3-15. Variations of normalized absorption (a) and emission (b, excited at 430 nm) spectra of the dilute PNETE-OC6/p-xylene solution cast film during room temperature standing up to ca. 70days…………68
Figure 3-16. X-ray diffraction profiles of solution cast PNETE-OC6 film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta………………………………..69
Figure 3-17. Normalized absorption and emission spectra of solution-cast PNETE-OC6 film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history exactly parallels that of the XRD study in Figure .3-16…………………………………………………………...70
Figure 3-18. Polarized light micrographs of solution-cast PNETE-OC6 film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 185oC: (a) as-cast film at room temperature, (b) heated to 95 oC, (c) 110 oC, and (d) 185 oC……………………………………...71
Figure 4-1. Chemical structure of PS-P3OT-PS……………………….…………79
Figure 4-2. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute PS-P3OT-PS (1:1:1) / p-xylene solution during room-temperature standing up to ca. 95hr. …………..…….81
Figure 4-3. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute PS-P3OT-PS (1:1:1) / NMP solution during room-temperature standing up to ca. 95hr. …………..…….82
Figure 4-4. X-ray diffraction profiles of solution cast PS-P3OT-PS (1:1:1) film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta…………………………….83
Figure 4-5. Polarized light micrographs of solution-cast PS-P3OT-PS (1:1:1) film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 95 oC: (a) as-cast film at room temperature, (b) heated to 100 oC, (c) 140 oC, and (d) 170 oC………………………..84
Figure 4-6. Normalized absorption and emission spectra of solution-cast PS-P3OT-PS (1:1:1) film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history exactly parallels that of the XRD study in Figure .4-4…………………………………………………………...85
Figure 4-7. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute PS-P3OT-PS (3:2:3) / p-xylene solution during room-temperature standing up to ca. 95hr……………..….86
Figure 4-8. Variations of normalized absorption (a) and emission (b, excited at 400 nm) spectra of the dilute PS-P3OT-PS (3:2:3) / NMP solution during room-temperature standing up to ca. 95hr.…………………87
Figure 4-9. Change in UV-vis and PL spectra of ethanol solution of PS-P3OT-PS…………………………………………………………...88
Figure 4-10. X-ray diffraction profiles of solution cast PS-P3OT-PS (3:2:3) film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. …………………………...89
Figure 4-11. Polarized light micrographs of solution-cast PS-P3OT-PS (3:2:3) film at a fixed heating/cooling rate of 20 oC/min in the temperature range of ambient to 95 oC: (a) as-cast film at room temperature, (b) heated to 100 oC, (c) 110 oC, and (d) 160 oC………………………….90
Figure 4-12. Normalized absorption and emission spectra of of solution-cast PS-P3OT-PS (1:1:1) film upon fast cooling to room temperature during a sequence of 5-min heat treatments at stepwise increased Ta. Note that the thermal history exactly parallels that of the XRD study in Figure 4-10………………………………………………………….91
List of Table
Table 1. Optical data of FHDDTH and FHBDTH………………………………20
Table 2. Optical data of PNETE-C6 and PNETE-OC6…………………………54
Table 3. Optical data of PS-P3OT-PS…………………………………………….80
參考文獻 References
Reference
1. Pope, M. K., H. and Magnante, P. Journal of Chemical Physics., 1963, 38, 2042.
2. Burroughes, J. H. B., D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature., 1990, 347, 539.
3. Tran, V. H. M., V.; Nguyen, T. P.; Davenas, J. Polymer., 1996, 37, 2061.
4. Roberts, M. F. J., S. A. Chem. Mater., 1994, 6, 135.
5. Braun, D.; Gustafsson, G.; McBranch, D.; Heeger, A. J. J. Appl. Phys., 1992, 72, 564.
6. Greenham, N. G.; Brown, A. R.; Bradley, D.; Friend, R. H. Synth. Met., 1993, 57, 4134.
7. Roberts, M. F.; Jenekhe, S. A. Chem. Mater., 1992, 4, 1282.
8. Yamamoto, T., Sanechika, K., Yamamoto, A. J. J. Polym. Sci., Polym. Lett.Ed. 1980, 18, 2869.
9. Elsenbaumer, R. L., Jen, K. Y., Oboodi, R. Synth. Met., 1986, 15, 196.
10. Bao, Z.; Rogers, J. A.; Katz, H. E. J.Mater. Chem., 1999, 9, 1895.
11. Levon, K.; Park, K. C.; Cai, C. Synth. Met., 1997, 84, 335.
12. Chen, S. H.; Conger, B. M.; Mastrangelo, J. C.; Kende, A. S.; Kim, D. U.
Macromolecules., 1998, 31, 8051.
13. Tashiro, K., Minagawa, Y., Kobayashi, M., Morita, S., Kawai, T., Toshino, K.,
Synth. Met., 1993, 55-57, 321.
14. Prosa, T. J.; Winokur, M. J.; Moulton, J.; Smith, P.; Heeger, A. J.
Macromolecules., 1992, 25, 4364.
15. Prosa, T. J.; Winokur, M. J.; McCullough, R. D. Macromolecules., 1996, 29,
3654.
16. Tashiro, K., Kobayashi, M., Kawai, T., Yoshino, K. Polymer., 1997, 38, 2867.
17. Leclerc, M., Faid, K., Mazerolle, L., Chen, T. A., Rieke, R. D. Chem. Mater.,
1995,7, 1390.
18. Holdcroft, S., Yang, C. Macromolecules 1996, 29, 6510.
19. Iwasaki, K., Fujimoto, H., Matsuzaki, S. Synth. Met., 1994, 63, 101.
20. Yamamoto, T., Komarudin, D., Arai, M., Lee, B. L. J. Am. Chem. Soc., 1998, 120, 2047.
21. Yue, S., Berry, G. C., McCullough, R. D. Macromolecules 1996, 29, 933.
22. McCullough, R. D., Tristram-Nagle, S., Williams, S. P., Lowe, R. D. J. Am. Chem. Soc., 1993, 115, 4910.
23. Rumbles, G., Magnani, L., Murray, K. A., Stone, A. B. Synth. Met., 1996, 76, 47.
24. Jenekhe, S. A., Osaheni, J. A. Science., 1994, 265, 765.
25. Blatchford, J. W., Gustafson, T. L., Epstein, A. J. Physical. Review B., 1996, 54, 3683.
26. Samuel, I. D. W., Rumbles, G., Collison, C. J. Phys. Rev B., 1995, 52, 11753.
27. Mahrt, R. F., Gobel, E. O., Lemmer, U., Chem. Phys Letters., 1995, 30, 373.
28. Blatchford, J. W., Gustafson, T. L., Epstein, A. J. Phys. Rev B., 1996, 54, 9180.
29. Nguyen, T. Q., Schwartz, B. J., Martini, I. B. J. Phys. Chem. B., 2000, 104, 237.
30. Conwell, E. M. Phys. Rev B., 1998, 57, 14200.
31. Wu, M. W., Conwell, E. M. Phys. Rev B., 1997, 56, R10060.
32. Andersson, M. R.; Berggren, M.; Inganas, O.; Macromolecules., 1995, 28, 7525.
33. Granstrom, M.; Inganas, O. Appl. Phys. Lett., 1996, 68, 147.
34. Pei, Q.; Yang, Y. J. Am. Chem. Soc., 1996, 118, 7416.
35. Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys. 1991, 30, 1941.
36. Ranger, M.; Rondeau, D.; Leclerc, M. Macromolecules 1997, 30, 7686.
37. Fox, M. A., Teetsov, J. A. J. Mater. Chem., 1999, 9, 2117.
38. Teetsov, J. A., Vanden Bout, D. A. J. Am. Chem. Soc., 2001, 123, 3605.
39. Kim, J. S.; Friend, R. H.; Cacialli, F. Appl. Phys. Lett., 1999, 74, 3084.
40. Duhamel, J., Jones, A. S., Dickson, T. J., Wilson, B. E. Macromolecules., 1999, 32, 2956.
41. Guillet, J. E., Holden, D. A. Macromolecules., 1980, 13, 295.
42. Tanaka, S., Sato, M. A., Kaeriyama, K. Synth. Met., 1988, 25, 277.
43. Chen, T. A., Wu, X., Rieke, R. D. J. Am. Chem. Soc., 1995, 117, 233.
44. Tour, J. M., Wu, R. Macromolecules., 1992, 25, 1901.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code