Responsive image
博碩士論文 etd-0627105-131910 詳細資訊
Title page for etd-0627105-131910
論文名稱
Title
基因演算法於智慧型可撓性連桿之強健控制器設計
Design of a Robust Controller for the Smart Flexible Linkage Using Genetic Algorithms
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-09
繳交日期
Date of Submission
2005-06-27
關鍵字
Keywords
主動式強健控制、有限元素法、基因演算法、撓性連桿機構
Active Robust Control, Finite Element Method, Genetic Algorithms, Flexible Linkage Mechanism
統計
Statistics
本論文已被瀏覽 5663 次,被下載 1548
The thesis/dissertation has been browsed 5663 times, has been downloaded 1548 times.
中文摘要
本論文旨在研究使用基因演算法於含壓電材料之可撓性曲柄滑塊連桿機構的主動式強健控制器設計。由於連桿機構在高速運轉下會產生慣性力的干擾,且撓性機構在模態截斷、線性時變參數擾動、殘餘模態所引起之過溢效應等種種因素下,皆會導致系統不穩定。
在機械結構控制的應用上,本文以有限元素法將含壓電材料之連桿機構進行模式化工作,並取低頻模態做為控制器與觀測器的設計。在系統的強健性方面,利用基因演算法找出符合強健穩定性條件的最佳值,使系統在受到時變參數擾動及過溢效應下仍能維持系統的穩定性。
由數值模擬結果顯示,利用基因演算法找出來的各項參數,均能有效抑制連桿在高速運動下產生的變形,並避開時變參數擾動及過溢效應所造成的不穩定。
Abstract
The purpose of this thesis is to study the active robust control for the flexible slider-crank linkage mechanism with piezoelectric films using genetic algorithms. The instability caused by the inertia force that is induced by the high-speed rotation flexible slider-crank linkage, mode truncation, parameter uncertainties, and spillover effect due to the residual modes of structure.
For the application of the mechanical structure system, a mathematical model for a slider-crank linkage mechanism with piezoelectric films is developed in conjunction with finite element method (FEM), and the lower frequency modes are separated into controlled modes and residual modes. For the robustness of the system, a robust stability condition and genetic algorithms are employed to ensure the stability of the system under the parameter uncertainties and spillover effect simultaneously.
Numerical simulation is performed to the control methodology with genetic algorithms can suppress deform of flexible slider-crank linkage mechanism operating at high speeds, and the instability caused by the parameter uncertainties and spillover effect can be avoided.
目次 Table of Contents
Contents
Contents…………………………………………………………i
List of Figures……………………………………………………iv
List of Tables……………………………………………………v
List of Symbols…………………………………………………vi
Chinese Abstract………………………………………………viii
English Abstract…………………………………………………ix

Chapter 1 Introduction……………………………………………1
1.1 Research Motivation and Goal…………………………………..1
1.2 Papers Review………………………………………………2
1.2.1 Robust Control of Flexible Linkage Mechanisms………………2
1.2.2 Genetic Algorithms……………………………………4
1.3 Overview…………………………………………………5

Chapter 2 System Description……………………………………6
2.1 Physical Description and Assumptions……………………………6
2.2 Kinematics Analysis by Complex Number…………………………6
2.3 Mathematical Modeling of Control Actuator and Sensor………………8
2.3.1 Control Actuator………………………………………8
2.3.2 Control Sensor………………………………………….9
2.4 Structure Modeling…………………………………………10
2.4.1 Equation of Motion…………………………………….10
2.4.2 Finite Element Method (FEM)............................................11
2.4.3 Transformation into State Space Form……………………13

Chapter 3 Genetic Algorithms……………………………………18
3.1 Introduction………………………………………………..18
3.2 General Structure of Genetic Algorithms…………………………19
3.3 Genetic Algorithms Terminology………………………………19
3.3.1 Chromosome Representation……………………………19
3.3.2 Fitness Function……………………………………….20
3.3.3 Reproduction…………………………………………20
3.3.4 Crossover……………………………………………21
3.3.5 Mutation……………………………………………22
3.3.6 Elitist Strategy………………………………………22
3.4 The Structure of Genetic Algorithms with Elitist Strategy…………….22

Chapter 4 Robust Control System Design………………………......28
4.1 System Description…………………………………………29
4.2 Illustrative Example………………………………………….35
Chapter 5 Conclusions and Recommendations……………………47
5.1 Conclusions………………………………………………..47
5.2 Future Works……………………………………………….48
Appendix:Proof of the Theorem…………………………………..49
References………………………………………………………50
參考文獻 References
References
1.Anderson, and Moore, 1971, “Linear Optimal Control,” Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
2.Balas, M. J., 1978, “Active Control of Flexible Systems,” Journal of Optimization Theory and Applications, Vol. 25, No. 3, pp. 415-436.
3.Chen, C. I. and C. W. Yang, 1995, “Active Control of Flexible Mechanism and Piezoelectric Actuator Dynamic System,” Proceedings of the Third National Conference on the Society of Sound and Vibration, Taipei, Taiwan, Republic of China, pp. 77-85.
4.Choi, S. B., C. C. Cheong, B. S. Thompson and M.V. Gandhi, 1994, “ Vibration Control of Flexible Linkage Mechanisms Using Piezoelectric Films,” Mechanism and Machine Theory 29, No. 4, pp. 535-546.
5.Cleghorn, W. L., F. G. Fenton and B. Tabarrok, 1981, “Optimal Design of High-Speed Flexible Mechanisms,” Mechanism and Machine Theory, Vol. 16, pp. 339-406.
6.Coley, D.A., 1999, “An Introduction to Genetic Algorithms for Scientists and Engineers,” River Edge, Singapore.
7.Fanson, J. L, T. K. Canghey and J. C. Chen, 1985, “Stiffness Control of Large Space Structures,” Proceedings of the Workshop on Identification and Control Flexible Space Structures, Vol. 2, pp. 351-364.
8.Frenzel, J. F., 1993, “Genetic Algorithms,” IEEE Potentials, Vol. 12, No. 3, pp. 21-24.
9.Ghazavi, A., F. Gardanine and N. G. Chalhout, 1993, “Dynamic Analysis of a Composite Material Flexible Robot Arm,” Computers and Structures, Vol. 49, pp. 315-325.
10.Ginter, S. D., 1978, “Attitude Control of Large Flexible Spacecraft,” Master Thesis, Department of Aeronautics and Astronautics, MIT.
11.Inman, D. J., 1989, “Vibration with Control, Measurement and Stability,” Prentice-Hall, Englewood Cliffs, New Jersey.
12.Karr, C. L. and L.M. Freeman, 1999, “Industrial Application of Genetic Algorithms,” CRC Press, Boca Raton, Florida.
13.Khot, N. S. and S. A. Heise, 1994, “Consideration of Plant Uncertainties in the Optimum Structural-Control Design,” AIAA Journal, Vol. 32, No. 3, pp. 610-615.
14.Liao, C. Y. and C. K. Sung, 1993, “An Elastodynamic Analysis and Control of Flexible Linkages Using Piezoceramic Sensors and Actuators,” ASME Journal of Mechanical Design, Vol. 115, No. 3, pp. 658-665.
15.Liao, W. H., J. H. Chou and I. R. Horng, 1997, “Robust Vibration Control of Flexible Linkage Mechanisms Using Piezoelectric Films,” Smart Materials and Structures, Vol.6, pp.457-463.
16.Lin, C. L., F. B. Hsiao and B. S. Chen, 1990, “Stabilization of Large Structural Systems under Mode Truncation, Parameter Perturbations and Actuator Saturations,” International Journal of Systems Science, Vol. 21, No. 8, pp. 1423-1440.
17.Mabie H. H. and F. W. Ocvirk, 1978, “Mechanisms and Dynamics of Machinery,” Wiley, New York.
18.OH Y. H., T. K. Chung, M. K. Kim and H. K. Jung, 1999, “Optimal Design of Electric Machine Using Genetic Algorithms Coupled with Direct Method,” IEEE Transactions on Magnetics, Vol. 35, No. 3, pp. 1742-1745.
19.Oliver, J. H., D. A. Wysocki and B. S. Thompson, 1985, “The Synthesis of Flexible Linkages by Balancing the Tracer Point Quasi-static Deflections Using Microprocessor and Advanced Material Technologies,” Mechanism and Machine Theory, Vol. 20, pp. 471-482.
20.Soong, K., D. Sunappan and B. S. Thompson, 1989, “The Elastodynamic Response of a Class of Intelligent Machinery, Part 1: Theory,” ASME Journal Vibration Acoustics, and Reliability in Design, Vol. 111, pp. 430-436.
21.Soong, K., D. Sunappan and B. S. Thompson, 1989, “The Elastodynamic Response of a Class of Intelligent Machinery, Part 2: Computional and Experimental Results,” ASME Journal Vibration Acoustics, and Reliability in Design, Vol. 111, pp. 437-442.
22.Sung, C. K. and B. S. Thompson, 1984, “Material Selection: An Important Parameter in the Design of High-Speed Linkages,” Mechanism and Machine Theory, Vol. 19, pp. 389-396.
23.Sung, C. K. and Y. C. Chen, 1991, “Vibration Control of the Elastodynamic Response of High-Speed Flexible Linkage Mechanisms,” ASME Journal of Vibration and Acoustics, Vol. 113, pp. 14-21.
24.Tirupathi, R. C. and D. B. Ashok, 1991, “Introduction to Finite Element in Engineering,” Prentice-Hall, Englewood Cliffs, New Jersey.
25.Xu, H., X. Y. Wei and M. S. Xu, 2000, “Schema Analysis of Multi-Points Crossover Genetic Algorithm,” Proceedings of the Third World Congress on Intelligent Control and Automation, Vol. 1, pp. 521-524.
26.Zheng L. A., 2004, “A Robust Disturbance Rejection Method for Uncertain Flexible Mechanical Vibrating Systems under Persistent Excitation,” Journal of Vibration and Control, Vol. 10, No. 3, pp. 343-357.
27.Zhang, X., C. Shao and A. G. Erdman, 2002, “Active vibration controller design and comparison study of flexible linkage mechanism systems,” Mechanism and Machine Theory, Vol. 37, No. 8, pp. 985-997.
28.Zhang, X. M., C. J. Shao and S. P. Li, 2001, “Robust H∞ Vibration Control for Flexible Linkage Mechanism System with Piezoelectric Sensor and Actuators,” Journal of Sound and Vibration, Vol.243, No.1, pp.145-215.
29.Zhang, X. M., Y. W. Shen, H. Z. Liu and W. Q. Cao, 1995, “Optimal Design of Flexible Mechanisms with Frequency Constraints,” Mechanism and Machine Theory, Vol. 30, No. 6, pp. 131-139.
30.廖文煇, 2001,“可撓性連桿機構之強健性控制器設計,”國立中山大學機械工程研究所,博士論文。
31.周鵬程, 2002,“遺傳演算法原理與應用—活用Matlab,”全華科技叢書。
32.陳奕仁, 2001,“適應性基因演算法結合精英政策於線性馬達定位機台之主動式振動控制器設計,”國立中山大學機械工程研究所,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code