Responsive image
博碩士論文 etd-0627105-212330 詳細資訊
Title page for etd-0627105-212330
論文名稱
Title
真菌(Aspergillus niger NBG5)用於養殖池水除氮系統之建立與模式研究
The Foundation and Model Research of Aspergillus niger NBG5 for Application of Aquaculture Nitrogenous Removal System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
196
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-12
繳交日期
Date of Submission
2005-06-27
關鍵字
Keywords
生物反應器、循環水、養殖、Aspergillus niger
Bioreactor, Aspergillus niger, Aquacultural, Water recycle
統計
Statistics
本論文已被瀏覽 5818 次,被下載 16
The thesis/dissertation has been browsed 5818 times, has been downloaded 16 times.
中文摘要
本研究係從淡水循環水養殖系統的濾材表面,篩選分離出一株易於純化培養且具有除氮能力之絲狀菌,經DNA鑑種確認篩得之絲狀菌為Aspergillus niger NBG5。將A. niger NBG5應用於生物反應器,使其成為優勢菌種,進而建立一套新型的養殖用完全混合單槽式除氮系統。
在不同溫度下,測試A. niger NBG5對不同氮源的消耗特性,結果顯示,在30℃同溫下,本菌消耗銨氮所得之比氮源消耗速率為0.047 g-N g-cell-1 day-1,比消耗亞硝酸氮或蛋白質氮均較佳。而在養殖用完全混合單槽式除氮系統測試結果顯示,當人工廢水之初始銨濃度為50 mg L-1時,所得之銨消耗速率為4.8 mg m-2 day-1,而以實際養殖廢水測試時,所得之銨消耗速率則為0.32 mg m-2 day-1。顯示本研究所建立之養殖用完全混合單槽式除氮系統,可藉由A. niger NBG5消耗實際養殖廢水中的氮源生長,進而達到降低養殖廢水中銨濃度的應用目標。
本研究另以數值模擬完全混合雙槽式與養殖用完全混合單槽式兩種除氮系統的銨濃度變化,其中完全混合雙槽式除氮系統的模擬結果,當初始銨濃度為50 mg L-1時,模擬求得不同水流速與除銨效率的回歸公式為y = 5.7219x-0.9616。而養殖用完全混合單槽式除氮系統模擬結果顯示,養殖槽的水容積愈大時,銨濃度累積會有愈高現象,若在相同條件下,以不同水流速模擬測試,可判定較佳之操作水流速。本研究所建立之數值模擬系統,可模擬各種投餌時間、水流速與水容積,計算求得養殖槽與反應器內的銨濃度消耗趨勢,提供日後系統設計、水流量操作、投餌時機與其他相關領域研究的參考。
Abstract
The research demonstrated that an easily cultivated fungus was screened from filter materials of fresh water recycle aquaculture system. A fungus, characterized as being able to remediate multiple nitrogenous wastes, was identified as Aspergillus niger NBG5. A. niger NBG5 was developed as superior fungus through bioreactor so as to establish a nitrogenous removal system of single tank stirred tank reactor (SSTR).
A. niger NBG5’s remediative responses were tested under various temperatures. The experiment showed that specific nitrogen consumption rate was 0.047 g-N g-cell-1 day-1 at 30℃ which were better than nitrite nitrogen and protein nitrogen consumption. When the artificial wastes’ ammonium concentration was set as 50 mg L-1, its ammonium consumption rate was 4.8 mg m-2 day-1. The ammonium consumption rate reached 0.32 mg m-2 day-1 with aquaculture wastes. The result revealed that SSTR removed nitrogen from aquaculture wastes by A. niger NBG5 and achieved a purpose of decreasing ammonium within aquaculture wastes.
The research simulated ammonium variable numerals between SSTR and BSTR (the system of bi-tank stirred tank reactor). Through BSTR, regression formula with water flow rate and ammonium removal efficiency rate was y = 5.7219x-0.9616 when the ammonium concentration was set as 50 mg L-1. SSTR simulated a phenomenon—the more ammonium concentration aquaculture wastes reached, the much waste water volume of aquaculture tank it had. Based on the same requirements, a better water flow rate would be concluded through various water flow rate simulation tests. SSTR numerical simulation system could simulate ammonium production rate of fish tank to get consumption trends of ammonium concentration in fish tank and reactor. The simulation results would be able to decide later system design, water flow rate, feed timing and similar research references.
目次 Table of Contents
謝誌 ------------------------------------------------------------------------- Ⅰ
中文摘要 ------------------------------------------------------------------------- Ⅱ
Abstract ------------------------------------------------------------------------- Ⅳ
目錄 ------------------------------------------------------------------------- Ⅵ
表目錄 ------------------------------------------------------------------------- Ⅸ
圖目錄 ------------------------------------------------------------------------- Ⅹ
第一章 緒論 ---------------------------------------------------------------- 1
第二章 文獻回顧 ----------------------------------------------------------- 4
2.1 養殖廢水之氮化合物產出產出與影響 ----------------------- 4
2.2 微生物對氮化合物的利用 -------------------------------------- 4
2.3 生物反應器之特性與應用 -------------------------------------- 6
2.4 生物濾床之除氮效益 -------------------------------------------- 9
2.5 好氧微生物處理動力學 ----------------------------------------- 11
2.6 動力學之數學模式 ----------------------------------------------- 12
第三章 材料與方法 -------------------------------------------------------- 17
3.1 實驗設備 ----------------------------------------------------------- 17
3.2 絲狀菌實驗方法 -------------------------------------------------- 18
3.2.1 絲狀菌篩選與分離 ----------------------------------------------- 18
3.2.2 絲狀菌鑑種- ------------------------------------------------------- 19
3.2.3 A. niger NBG5培養 ---------------------------------------------- 20
3.2.4 水質分析 ----------------------------------------------------------- 20
3.3
3.4 動力學參數計算 --------------------------------------------------
絲狀菌基本特性實驗方法---------------------------------------- 21
23
3.4.1 不同溫度下A. niger NBG5對人工廢水之利用分析 ------- 23
3.4.2 溫度對五個動力學參數之統計分析 -------------------------- 24
3.4.3 不同濃度下A. niger NBG5對人工廢水之利用分析 ------- 24
3.5 生物反應器與除氮系統實驗方法------------------------------- 25
3.5.1 生物反應器設計---------------------------------------------------- 25
3.5.2 注塞流式除氮系統------------------------------------------------- 26
3.5.3 完全混合雙槽式除氮系統---------------------------------------- 27
3.5.4 養殖用完全混合單槽式除氮系統------------------------------- 28
3.6 數值模擬方法 ----------------------------------------------------- 29
3.6.1 完全混合雙槽式反應器之數值模擬 -------------------------- 29
3.6.2 養殖用完全混合單槽式反應器之數值模擬 ----------------- 34
第四章 結果 ----------------------------------------------------------------- 46
4.1 絲狀菌篩選、分離與鑑種結果 --------------------------------- 46
4.2 A. niger NBG5在不同溫度下對人工廢水之消耗特性------ 47
4.3 溫度對五個動力學參數之統計分析 -------------------------- 50
4.4 A. niger NBG5在不同濃度下對人工廢水之消耗特性------ 51
4.5 注塞流式除氮系統試驗 ----------------------------------------- 56
4.6 完全混合雙槽式除氮系統試驗 -------------------------------- 57
4.7 養殖用完全混合單槽式除氮系統試驗 ----------------------- 58
4.8 完全混合雙槽式反應器之數值模擬 -------------------------- 60
4.9 養殖用完全混合單槽式反應器之數值模擬 ----------------- 62
第五章 討論 ----------------------------------------------------------------- 109
5.1 A. niger NBG5之鑑種、培養與基本特性 --------------------- 109
5.2 A. niger NBG5在不同溫度下對人工廢水之消耗特性 ----- 111
5.3 溫度對五個動力學參數之統計分析 -------------------------- 115
5.4 A. niger NBG5在不同濃度下對人工廢水之消耗特性 ----- 115
5.5 注塞流式除氮系統試驗 ----------------------------------------- 119
5.6 完全混合雙槽式除氮系統試驗 -------------------------------- 120
5.7 養殖用完全混合單槽式除氮系統試驗 ----------------------- 122
5.8 完全混合雙槽式反應器之數值模擬 -------------------------- 123
5.9 養殖用完全混合單槽式反應器之數值模擬 ----------------- 124
第六章 結論 ----------------------------------------------------------------- 128
參考文獻 ------------------------------------------------------------------------- 130
附錄 ------------------------------------------------------------------------- 139
附錄A NIH 網站基因庫資料 -------------------------------------------- 139
附錄B 攪碎時間試驗與菌體乾濕重對照回歸圖---------------------- 143
附錄C 溫度對人工廢水利用特性影響實驗原始圖 ----------------- 146
附錄D 不同人工廢水濃度之利用特性實驗原始圖 ----------------- 150
附錄E 臭氧養殖用基本特性實驗分析結果 -------------------------- 155
附錄F 數值模擬程式 ----------------------------------------------------- 161
附錄G 注塞流式除氮系統預備試驗 ----------------------------------- 167
附錄H 實驗設備照片 ----------------------------------------------------- 169





























表目錄

Table 4.1 Average values of kinetics parameters for various nitrogenous
wastes at various temperatures applied. ---------------------------- 67
Table 4.2 Analysis of the percentage of the nitrogen sources and specific
consumption rate by A. niger NBG5 in SG-NH4 substrate. ----- 68
Table 4.3 Analysis of the percentage of the nitrogen sources and specific
consumption rate by A. niger NBG5 in BG-NO2 substrate. ---- 68
Table 4.4 Analysis of the percentage of the nitrogen sources and specific consumption rate by A. niger NBG5 at SG-NH4 substrate
added Mk-protein. ----------------------------------------------------- 69
Table 4.5 Analysis of the percentage of the nitrogen sources and specific consumption rate by A. niger NBG5 at BG-NO2 substrate
added Mk-protein. ----------------------------------------------------- 70








圖目錄

Fig. 1.1 Diagram of research procedure. ------------------------------------ 3
Fig. 2.1 Single CFSTRs simulation model. --------------------------------- 14
Fig. 2.2 ASFF reactor. --------------------------------------------------------- 16
Fig. 3.1 The diagram of CFSR. ----------------------------------------------- 38
Fig. 3.2 The diagram of SSTR. ----------------------------------------------- 39
Fig. 3.3 The flow chart of nitrogen removal system. ---------------------- 40
Fig. 3.4 The diagram of CFSR nitrogen removal system. ---------------- 41
Fig. 3.5 The diagram of BSTR nitrogen removal system. ---------------- 42
Fig. 3.6 The diagram of SSTR nitrogen removal system for Aquacultural. ----------------------------------------------------------
43
Fig. 3.7 The diagram of numerical simulation model of BSTR nitrogen removal system. ------------------------------------------------------
44
Fig. 3.8 The diagram of numerical simulation model of SSTR nitrogen removal system for Aguacultural. ----------------------------------
45
Fig. 4.1 Utilization of nitrite by four fungal isolates. --------------------- 71
Fig. 4.2 Concentration profiles of three nitrogenous wastes utilized by A. niger NBG5 in shaker flasks. ------------------------------------
72
Fig. 4.3 A. niger NBG5 in various nitrogenous wastes in shaker flasks.-------------------------------------------------------------------
75
Fig. 4.4 Concentration profiles of ammonium and glucose utilized by A. niger NBG5 in the continuous fixed-slab reactor. ------------
76
Fig. 4.5 Concentration profiles of ammonium and glucose utilized by A. niger NBG5 in the continuous fixed-slab reactor. ------------
77
Fig. 4.6 The removal ratio of ammonium in BSTR with different flow rates. --------------------------------------------------------------------
78
Fig. 4.7 Concentration profiles of ammonium utilized by A. niger NBG5 in the BSTR with flow speed of 2 mL min-1. ------------
79
Fig. 4.8 Removal of high ammonium in SSTR at the flow speed of 2 mL min-1. --------------------------------------------------------------
80
Fig. 4.9 Feed loading challenges the capacity of the SSTR with A. niger NBG5. ----------------------------------------------------------
81
Fig.4.10 Numerical simulation profiles of ammonium utilized in BSTR with Monod kinetic model for both reactors. ---------------------
82
Fig.4.11 Numerical simulation profiles of ammonium utilized in first reactor of BSTR at different flow rates. ---------------------------
84
Fig.4.12 Numerical simulation profiles of ammonium removal efficiency in first reactor of BSTR at different flow rate. -------
86
Fig.4.13 Numerical simulation Profiles of ammonium removal efficiency in first reactor of BSTR with different flow

rate.---------------------------------------------------------------------- 87
Fig.4.14 Numerical simulation profiles of ammonium with constant type of waste production rate. --------------------------------------
88
Fig.4.15 Numerical simulation profiles of ammonium with different period of constant type of waste production rate. ----------------
90
Fig.4.16 Numerical simulation profiles of ammonium with sine type of waste production rate by different flow rate. ---------------------
93
Fig.4.17 Numerical simulation profiles of ammonium with sine type of waste production rate by different fish tank volume. ------------
96
Fig.4.18 Numerical simulation profiles of ammonium with sine type of waste production rate by feed time lower than excrete time.---
98
Fig.4.19 Numerical simulation profiles of ammonium with sine type of waste production rate by feed time and excrete time same as 8

hour. -------------------------------------------------------------------- 100
Fig.4.20 Numerical simulation profiles of ammonium with sine type of waste production rate by feed time higher than excrete time.---
102
Fig.4.21 Numerical simulation profiles of ammonium with sine type of waste production rate by feed time higher than excrete time.---
104
Fig.4.22 Numerical simulation profiles of ammonium with sine type of waste production rate by feed time and excrete time same as

24 hour. ---------------------------------------------------------------- 106
Fig.4.23 Numerical simulation profiles of ammonium with sine type of waste production rate by feed time and excrete time same as
24 hour with different water flow rate 0.1, 0.3, 0.5, 1, 1.5 and 2 L hr-1. ----------------------------------------------------------------
108
參考文獻 References
1.陳國誠,1987,生化工程學,合記圖書出版社,台北市。pp. 19-22。
2.洪仁陽,1999,生物去除營養物質之廢水處理廠的設計與改裝,
國立編譯館,台北市。pp. 14-32。
3.顧夏聲,1990,廢水生物處理數學模式,曉園出版社,初版,台北市。pp. 41-85。
4. Abeysinghe, D.H., Shanableh, A., & Rigdden, B., 1996. Biofilters for water reuse in aquaculture. Wat. Sci. Tech. 34, No. 11, 253-260.
5. Accensi, F., Cano, J., Figuera, L., Abarca, M.L., & Caba
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.200.179.138
論文開放下載的時間是 校外不公開

Your IP address is 44.200.179.138
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code