Responsive image
博碩士論文 etd-0627105-223526 詳細資訊
Title page for etd-0627105-223526
論文名稱
Title
以GENESIS模擬結構物引起之海岸線變遷
Applications of GENESIS on Modeling Structure-Induced Shoreline Changes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-22
繳交日期
Date of Submission
2005-06-27
關鍵字
Keywords
傳輸係數、海岸結構物、灘線變遷、離岸堤、突堤
GENESIS, transport parameter, shoreline change, groin, breakwater, coastal structure
統計
Statistics
本論文已被瀏覽 5673 次,被下載 1869
The thesis/dissertation has been browsed 5673 times, has been downloaded 1869 times.
中文摘要
有鑒於世界各地海岸侵蝕問題日益嚴重,若能用一套高效率、低成本且具可信度的數值模式,以預測及管理海岸變遷,將有助解決諸多海岸問題。本報告深入探討時下被普遍採用的一維長期灘線變遷模式—GENESIS,解析其適用性、靈敏度及使用上可能遭受的困難,以進一步應用於預測海岸結構物對灘線變遷的影響。
本研究於進行模擬之前,先對灘線長度、邊界條件、格點間距、傳輸係數K1與K2的設定及波向角的修正,提出具體建議;再引用多種水工模型試驗,進行驗證,以提高模式及各項參數設定之可信度;最後,提出設定K值的合理範圍。於波浪對單離岸堤正向入射時,更提出一迴歸公式計算K值比,在平均上下容許誤差約為12%~-7%範圍內,供未來進行模擬之重要參考。於波浪斜向入射單離岸堤時,建議設置K1=0.6,K2為K1的1/4~1/2左右。而於模擬單突堤時,則建議設置K1=0.6,K2為K1的1~2倍左右。本研究繼而將上述結果應用於模擬離岸堤及突堤對灘線變遷影響之研究。
本研究結果顯示,波浪對離岸堤正向入射時,離岸距與堤長之比值,S/B減小或波高變大,沙舌越長,受週期影響較小;下游最大侵蝕量則隨S/B減小而增大,幾乎不受波浪條件影響。波浪對離岸堤斜向入射時,波向角增加、S/B變小或波高變大,沙舌越長,受週期影響較小;下游最大侵蝕量則隨波向角增加或S/B減小而增大,幾乎不受波高及週期影響。模擬突堤時,下游最大侵蝕量則隨波向角增加或堤長增長而變大,幾乎不受波高及週期影響。
Abstract
Coastal erosion is, more than ever, a global problem. By adopting a high-efficient, cost effective and reliable numerical model, it would help predict and manage erosion, as well as alleviate many coastal problems. This thesis reports the results of a though out investigation on the popular one dimension long-term shoreline change model--- GENESIS, analyze its suitability, sensitivity and technical difficulties likely to encounter while using the model, with the aim to predict the effect of coastal structure on shoreline changes.
Prior to perform a modeling task, this report provides constructive recommendation on the setting of the length of shoreline to be covered in the modeling, boundary conditions, grid space, transport parameters K1 and K2 and revision of wave angle, followed by verification using results of several physical scale models, in order to enhance the reliability of the modeling and the parameters employed. Finally, reasonable ranges of K values are proposed. For modeling shoreline changes induced by a detached breakwater with normal incident waves, an empirical equation is proposed to determine the K ratio(K2/K1), which offer a useful guide in achieving the results with in a tolerance limits of 12%~-7%. When consider oblique wave incident to single detached breakwater, K1=0.6 is used and the ratio of K2/K1 ≈ 0.25~0.5. For modeling the effect of a single groin, the present study suggests K1=0.6 and K2/K1 ≈ 1~2. On the basis of these principles for setting the K values, the results are then applied to model the shoreline changes due to the installation of detached breakwater and groin.
From the results of this study, for normal wave incident to single detached breakwater, it shows that for a small ratio of the offshore distance to the length of the breakwater S/B or a larger wave height, the salient dimension will increase and wave period has almost no effect on the results produced; for small S/B ratio, the maximum downcoast retreat increase, and its quantity is almost not affected by the wave conditions imposed. For oblique wave incident to single detached breakwater, it shows that for a larger wave angle, a small S/B or a larger wave height, the salient dimension will increase and wave period has almost no effect on the results produced; for larger wave angle or small S/B ratio, the maximum downcoast retreat increase, and its quantity is almost not affected by the wave height and wave period. For modeling the effect of a single groin, it shows that for larger wave angle or length of groin, the maximum downcoast retreat increase, and its quantity is almost not affected by the wave height and wave period.
目次 Table of Contents
摘要
ABSTRACT
目錄
圖目錄
表目錄

第一章 緒論
1-1 研究動機
1-2 海岸變遷數值模式
1-3 GENESIS文獻回顧

第二章 長期海岸變遷之基本考量
2-1 基本假設與海岸變遷控制方程式
2-1-1 長期海岸線變遷的基本假設
2-1-2 沿岸漂沙傳輸率
2-2 經驗參數
2-2-1 海灘平均剖面形狀與坡度
2-2-2 漂沙臨界水深
2-3 數值模擬系統
2-3-1 波浪傳遞模式
2-3-2 數值模擬系統穩定性
2-4 岬灣理論
2-4-1 灣岸之穩定性
2-4-2 岬灣經驗公式
2-4-3 靜態平衡岬灣經驗式之工程應用

第三章 GENESIS系統介紹
3-1 GENESIS模式簡介
3-2 GENESIS模式之輸入資料
3-2-1 座標軸與網格格點
3-2-2 原始灘線位置
3-2-3 結構物設置
3-2-4 海底地形與海灘剖面資料
3-2-5 邊界條件設定
3-2-6 波浪資料
3-3 GENESIS模式之執行與輸出

第四章 GENESIS模式驗證
4-1 GENESIS靈敏度分析
4-1-1 模擬灘線長度的設定
4-1-2 波向角的修正
4-1-3 邊界條件的設定
4-1-4 格點間距的設定
4-1-5 K值的設定
4-2 GENESIS模式比較與驗證
4-2-1 GENESIS與靜態岬灣經驗公式比較
4-2-2 GENESIS與其他研究結果之比較
4-3 GENESIS模式與水工模型試驗結果比較
4-3-1 GENESIS模擬Shinohara(1966)之結果
4-3-2 GENESIS模擬Ming and Chiew(2000)之結果
4-3-3 GENESIS模擬Nielsen(2000)之結果
4-3-4 GENESIS模擬Weesakul and Rasmeemasmuang(2002)之結果

第五章 離岸堤背後灘線之模擬
5-1 波浪正向入射對單離岸堤背後灘線之影響
5-1-1 GENESIS模式參數設定
5-1-2 離岸堤長之影響
5-1-3 深海入射波高之影響
5-1-4 波浪週期之影響
5-1-5 綜合討論
5-2 波浪斜向入射對單離岸堤背後灘線之影響
5-2-1 GENESIS模式參數設定
5-2-2 深海波向角之影響
5-2-3 離岸堤長之影響
5-2-4 離岸堤離岸距之影響
5-2-5 深海波高之影響
5-2-6 波浪週期之影響
5-2-7 綜合討論
5-3 GENESIS模式於離岸堤群之應用
5-3-1 GENESIS模式參數設定
5-3-2 結果討論與驗證

第六章 單突堤下游灘線之模擬
6-1 單突堤對灘線變遷之影響
6-1-1 GENESIS模式參數設定
6-1-2 深海波向角之影響
6-1-3 堤長之影響
6-1-4 深海波高之影響
6-1-5 波浪週期之影響
6-2 綜合討論

第七章 結論與建議
7-1 結論
7-2 建議
參考文獻
參考文獻 References
1.Bruun, P., (1954). Coast erosion and the development of beach profiles. Technical Memorandum No. 44, Beach Erosion Board, US Army Corps of Engineers, Waterways Experiment Station, Vicksburg, MS, USA.
2.Dean, R. G., (1977). Equilibrium beach profile: US Atlantic and Gulf coast. Ocean Engineering Report No. 12, Department of Civil Engineering, University of Delaware, Newark, DE, USA.
3.Gravens M. B. and Kraus, N. C., (1989). Representation of the groin boundary condition in numerical shoreline change models. Proceedings, XXIII Congress, International Association of Hydraulic Research, pp.C515-C522.
4.Hallermeier, R. J., (1983). Sand transport limits in coastal structure design, Proceedings, Coastal Structures ’83, American Society of Civil Engineers, New York, pp.703-716.
5.Hanson, H., (1987). GENESIS: A generalized shoreline change model for engineering use. Report No. 1007, Department of Water Resources Engineering, University of Lund, Lund, Sweden.
6.Hanson, H., and Kraus, N. C., (1985). Seawall constraint in the shoreline numerical model. Journal Waterways, Port, Coastal and Ocean Engineering, American Society of Civil Engineers, New York, 3(6): 1079-1083.
7.Hanson, H., and Kraus, N. C., (1986). Forecast of shoreline change behind multiple coastal structures. Coastal Engineering in Japan, 29: 195-213.
8.Hanson, H., and Kraus, N. C., (1989). GENESIS: Generalized model for simulating shoreline change. Tech. Rep. CER-89-19, USAE-WES.
9.Hanson, H. and Larson, M., (1987). Comparison of analytic and numerical solutions of the one-line model of shoreline change. Proceedings, Coastal Sediments ’87, American Society of Civil Engineers, New York, pp. 500-514.
10.Hanson, H., Kraus, N. C., and Nakashima, L. D., (1989). Shoreline change behind transmissive detached breakwaters. Proceedings, Coastal Zone ’89, American Society of Civil Engineers, New York, pp. 568-582.
11.Hsu, T. W., Jan, C. D., and Wen, C. C., (2003). Modified McCormick’s model for equilibrium shorelines behind a detached breakwater. Ocean Engineering, 30(15):1887-1897.
12.Hsu, J. R. C. and Evans C., (1989). Parabolic bay shapes and applications. Proceedings, Inst. Civil Engrs., Part 2, London: Thomas Telford, 87: 557-570.
13.Hsu, J.R.C. and Silvester, R., (1990). Accretion behind single offshore breakwater. J. Waterways, Port, Coastal & Ocean Eng., ASCE, 116 (3): 362-380.
14.Klein, A.H.F., Vargas, A., Rabbe, A.L.A., and Hsu, J.R.C., (2003). Visual assessment of bayed beach stability using computer software. Computers & Geosciences, 29: 1249-1257.
15.Khoa, V. A., (1995). Experimentation on bayed beaches between headlands for small wave angle. M. Eng. Thesis No. WM-95-10, Asian Institute of Technology, Bangkok, Thailand.
16.Komar, P. D., and Inman, D. L., (1970). Longshore sand transport on baches. Journal Geophysical Research, 73(30): 5914-5927.
17.Kraus, N. C., (1983). Applications of shoreline prediction model. Proceedings, Coastal Zone’ 89, American Society of Civil Engineers, New York, pp. 632-645.
18.Kraus, N. C. and Harikai, S., (1983). Numerical model of the shoreline change at Oarai beach. Coastal Engineering, 7(1): 1-28.
19.Kraus, N. C., Gingerich, K. J., and Rosati, J. D., (1988). Toward an improved empirical formula for longshore sand transport. Proceedings, 21st International Conference on Coastal Engineering, American Society of Civil Engineers, New York, Vol. 2, pp. 1182-1196.
20.Kraus, N. C., Hanson, H., and Harikai, S., (1984). Shoreline change at Oarai beach Japan: past, present and future. Proceedings, 19th International Conference on Coastal Engineering, American Society of Civil Engineers, New York, Vol. 2, pp. 2107-2123.
21.Marek Szmytkiewicz, J. Biegowski, L. M. Kaczmarek (2000). Coastline Change Nearby Harbour Structures: Comparative Analysis of One-line Models Versus Field Data. Coastal Engineering, Vol. 40, pp. 119-139.
22.McCormick, M.E., (1993). Equilibrium shoreline response to breakwaters. Journal of Waterways, Port, Coastal, and Ocean Engineering, American Society of Civil Engineers, 119(6):657-670.
23.Ming, D., and Chiew, Y.M., (2000). Shoreline changes behind detached breakwater. Journal of Waterways, Port, Coastal and Ocean Engineering, American Society of Civil Engineers, 126(2):63-70.
24.Moore, B. D., (1982). Beach profile evolution in response to changes in water level and wave height, Master Thesis, Department of Civil Engineering, University of Delaware, Newark, DE.
25.Moreno, L. J. and Kraus, N. C., (1999). Equilibrium shape of headland-bay beaches for engineering design. Proceedings, Coastal Sediments ’99, American Society of Civil Engineers, New York, Vol. 1, pp. 860-875.
26.Nielsen, A. F., Turner, I. L., Miller, B. M., Leyden, V., and Gordon, A. D., (2000). Experiences with physical scale basin modeling using mobile sediments. Proceedings, 27th International Conference of Coastal Engineering, American Society of Civil Engineers, New York, Vol. 3, pp. 2928-2941.
27.Ozasa, H., and Brampton, A. H., (1980). Mathematical modeling of beaches backed by seawalls. Coastal Engineering, 4(1):47-64.
28.Pelnard-Considere, R., (1956). Essai de theorie de l’evolution des forms de rivage en plage de sable et de galets. 4th Journees de l’Hydraulique, Les Energies de la Mer, Question III, No. 1, pp. 289-298.
29.Pruszak, Z., Ostrowski, R., Skaja, M., and Szmytkiewicz, M. (2000). Wave climate and large-scale coastal processes in terms of boundary conditions, Coastal Engineering Journal, 42(1):31-56.
30.Shinohara, K., and Tsubaki, T., (1966). Model study on the change of shoreline of sandy beach by the offshore breakwater. Proceedings, 10th International Conference on Coastal Engineering, American Society of Civil Engineers, New York, pp 550-563.
31.Silvester, R. and Hsu, J. R. C., (1993). Coastal Stabilization: Innovative Concepts. Englewood Cliffs, NJ: Prentice Hall.
32.Silvester, R., and Hsu, J. R. C., (1997). Coastal Stabilization. World Scientific, Singapore. (Reprint of Silvester and Hsu, 1993)
33.Weesakul, S. and Rasmeemasmuang, T., (2002). Numerical computation of crenulate bay shape. Proceedings, 28th International Conference of Coastal Engineering, American Society of Civil Engineering, Vol.4, pp.3259-3271.
34.Yasso, W. E., (1965). Plan geometry of headland bay beaches. Journal Geology, 73: 702-714.
35.中華顧問工程司 (2004),「彌陀鄰近海岸環境及景觀整體改善研究規劃期中報告」。
36.吳政忠 (2005),「離岸堤背後灘線長期變遷之數值模擬」,國立中山大學海洋環境及工程研究所碩士論文。
37.林銘崇、蕭松山、張國強(2001),「海岸線變遷模式發展」,2001海洋數值模式研討會論文集,第13-1~13-8頁。
38.許泰文 (2001),「建立波潮流與海岸變遷模式」,經濟部水資源局。
39.許榮中 (2003),「海岸新工法-人工岬灣與養灘綜合工法」,海下技術月刊,2002年12月。
40.黃君偉 (2004),「突堤對下游灘線長期變遷影響之數值模擬」,國立中興大學土木工程研究所碩士論文。
41.蔡清標、陳鴻彬、許榮中、廖俊傑、陳恆立(2001),「斜向波浪對離岸堤背後平衡灘線影響之實驗研究」,第23屆海洋工程研討會論文集,第516-523頁。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code