Responsive image
博碩士論文 etd-0627108-233559 詳細資訊
Title page for etd-0627108-233559
論文名稱
Title
探討由Paroxetine與Maprotiline在人類骨癌細胞與小鼠神經瘤母細胞所誘發細胞凋亡中Caspase-3活化的機轉
Mechanisms of caspase-3 activation in the apoptosis of human osteosarcoma and murine neuroblastoma cells induced by paroxetine and maprotiline
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
146
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-24
繳交日期
Date of Submission
2008-06-27
關鍵字
Keywords
小鼠神經瘤母細胞、人類骨癌細胞、細胞凋亡
human osteosarcoma cells, paroxetine, maprotiline, Ca2+, MAPKs, caspase-3, apoptosis, murine neuroblastoma cells
統計
Statistics
本論文已被瀏覽 5672 次,被下載 1037
The thesis/dissertation has been browsed 5672 times, has been downloaded 1037 times.
中文摘要
憂鬱症是一種生理失調症狀,目前醫學上可藉著增加體內一種或多種下列神經傳導物質的量來治療:血清素(serotonin)、多巴胺(dopamine)及正腎上腺素(norepinephrine)等。目前抗憂鬱劑有七大類,其中選擇性血清素回收抑制劑(SSRIs)與四環抗憂鬱藥物被廣泛的肯定並視為是治憂鬱症之第一線藥物。但有些選擇性血清素回收抑制劑的生理學上的角色似乎與抑制血清素回收功能無關,如引起不同細胞凋亡的paroxetine隸屬SSRIs,另外maprotiline隸屬於四環抗憂鬱藥物,也曾發現可引起數種細胞株的凋亡,但也有研究也表明maprotiline可以或抑制其它藥物誘發之凋亡,因此這兩種藥對於凋亡的影響尚有爭議。
本研究之主旨,在於探討paroxetine與maprotiline在誘發小鼠神經瘤母細胞及人類骨癌細胞凋亡的作用機轉。首先利用WST-1螢光法測定不同藥劑濃度條件下的細胞存活率及以propidium iodide染色法測定其凋亡的情況。此外,以免疫吸乾法(immunoblotting)偵測凋亡標示蛋白caspase-3的活性是否隨著藥物的處理而有所改變,以及有絲分裂蛋白激酶[mitogen-activated protein kinases (MAPKs)]的磷酸化過程,藉以研究這些抗憂鬱藥物引起細胞凋亡的訊息傳導過程。本研究之結果有助於了解抗憂鬱藥劑對身體重要器官細胞的藥理毒理作用。
研究表明,在24小時內,paroxetine透過增加caspase-3的活化使培養的人類骨癌細胞(MG63)進入細胞凋亡。其次,免疫吸附法表明paroxetine可以活化胞外訊號調節激酶[extracellular signal-regulated kinase (ERK)],c-Jun氨基末端激酶[c-Jun NH2-terminal kinase (JNK)]與p38有絲分裂蛋白激酶[p38 mitogen-activated protein kinase (p38 MAPK)]的磷酸化表現,但只有SB203580(p38 MAPK的專一性抑制劑)可以部分的避免細胞產生凋亡。其三,細胞內鈣離子的研究發現paroxetine可引起細胞內鈣的濃度上升,但預處理一鈣離子的螯合物BAPTA/AM卻無法避免細胞死亡。這些結果顯示,paroxetine透過誘發與p38 MAPK相關連caspase-3的活化使MG63細胞進入與鈣離子訊號無關的細胞凋亡程序。
在抗憂鬱藥引起老鼠神經瘤母細胞(Neuro-2a)的凋亡研究中,maprotiline也是透過增加caspase-3的活化而導致細胞凋亡的產生。在由maprotiline所造成的Neuro-2a細胞凋亡中,其所引起的JNK磷酸化會幫助caspase-3的活化。因此顯示maprotiline誘發的細胞凋亡是透過依賴JNK/caspase-3的訊息路徑。我們也發現阻斷ERK的活化,可增加caspase-3的活化並造成由maprotiline所誘發的凋亡增加。這結果顯示在Neuro-2a細胞中,ERK為一存活訊號可對抗由maprotiline所引起的凋亡效應。因此,由maprotiline所導致的caspase-3活化似乎依賴JNK的活化與ERK的去活化。maprotiline也會引起細胞內鈣的濃度上升。預處理BAPTA/AM可抑制由maprotiline所誘發的ERK磷酸化,增強caspase-3的活化進一步增加由maprotiline所產生的細胞凋亡。總之,這項研究發現maprotiline在小鼠神經瘤母細胞中所誘發的細胞凋亡是透過與JNK相關連的caspase-3活化這條路徑而造成。Maprotiline同時也會引起與鈣離子訊號和ERK相關的抗細胞凋亡反應。上述的一些結果已發表在Toxicology and Applied Pharmacology與投稿在Toxicology Letters兩本期刊中。
Abstract
Depression is a physiological disorder that may be treated by increasing the body’s amount of one or a few of the following neurotransmitters: serotonin, dopamine and norepinephrine. Although there are seven distinct classes of antidepressants, selective serotonin reuptake inhibitors (SSRIs) and tetracyclic antidepressants are widely prescribed and generally regarded as the first-line drugs in the treatment of depression. However, many physiological roles of some SSRIs appear to be dissociated with the inhibition of serotonin reuptake. For instance, paroxetine, a member of SSRIs and maprotiline, a member of tetracyclic antidepressant, have been shown to induce apoptosis or to prevent other agents from inducing apoptosis in several cell lines. Thus the effects of these two drugs on the apoptosis are still controversial.
The aim of this study is to investigate the molecular mechanisms of paroxetine and maprotiline in induction of cell death in human osteosarcoma and murine neuroblastoma cells. First, WST-1 reduction assays and propidium iodide-staining assays were used to determine cell viability and apoptosis in the presence of paroxetine and maprotiline. Then immunoblotting was used to measure the activity of apoptotic markers caspase-3 and mitogen-activated protein kinases (MAPKs) to survey the apoptotic pathways induced by these two antidepressants. The experimental results may be helpful to understand the pharmacological and toxicological effects of these two antidepressants in cells from important organs.
Results showed that paroxetine caused apoptosis via the activation of caspase-3 in cultured human osteosarcoma cells (MG63). Although paroxetine could activate the phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK), only SB203580 (a p38 MAPK inhibitor) partially prevented cells from apoptosis. Paroxetine was also found to induce [Ca2+]i increases but pretreatment with BAPTA/AM, a Ca2+ chelator, prevented paroxetine-induced [Ca2+]i increases, and thus did not protect cells from death. These results suggest that paroxetine caused Ca2+-independent apoptosis via the activation of p38 MAPK-associated caspase-3 in MG63 cells.
Maprotiline was also found to induce apoptosis through increased caspase-3 activation in murine neuroblastoma Neuro-2a cells. Induction of JNK phosphorylation contributed to the activation of caspase-3 resulting in maprotiline-induced Neuro-2a cell apoptosis. Thus, it appears that maprotiline induced apoptosis via JNK/caspase-3-dependent signaling pathways. Blockage of activation of ERK was found to increase the activation of caspase-3 leading to an enhancement of maprotiline-induced apoptosis. These data suggest that ERK was a survival signal to oppose maprotiline-caused apoptotic effect in Neuro-2a cells. Thus the activation of caspase-3 by maprotiline appears to depend on the activation of JNK and the inactivation of ERK. [Ca2+]i measurement in the presence of maprotiline showed that the antidepressant induced [Ca2+]i increases. Interestingly, pretreatment with BAPTA/AM could suppress maprotiline-induced ERK phosphorylation, enhance caspase-3 activation and increase maprotiline-induced apoptosis. In conclusion, this study demonstrates that maprotiline induced apoptosis in murine neuroblastoma cells through activation of JNK-associated caspase-3 pathways. Maprotiline also evoked an anti-apoptotic response that was both Ca2+- and ERK-dependent. This thesis contains some published data in the journal of Toxicology and Applied Pharmacology and some data were submitted in the journal of Toxicology Letters.
目次 Table of Contents
摘要 i
ABSTRACT iii
LIST OF ABBREVIATIONS v
CHAPTER 1 INTRODUCTION 1
1. INTRONDUCTION 1
1.1. Monoamine hypothesis and the development of MAOIs and TCAs 1
1.2. Biochemical roles of monoamine neurotransmitter inhibitors 2
1.3. Development of antidepressant drus 2
1.4. Types of antidepressants 5
1.5. The cytotoxicity of antidepressants 8
1.6. The characteristics of apoptosis 9
1.7. The extrinsic pathway of apoptosis 10
1.8. The intrinsic pathway of apoptosis 10
1.9. The role of mitogen-activated protein kinases (MAPKs) in apoptosis 11
1.10. The role of Ca2+ signaling in apoptosis 14
2. AIM 17
3. STUDY STRATEGY 17
CHAPTER 2 MATERIALS AND METHODS 26
2.1. Materials 26
2.2. Cell culture 26
2.3. Solutions 26
2.4. [Ca2+]i measurements 27
2.5. Cell viability assays 28
2.6. Western immunoblotting 29
2.7. Flow cytometry 30
2.8. Statistics 31
CHAPTER 3 THE MOLECULAR MECHANISMS OF PAROXETINE-INDUCED APOPTOSIS IN HUMAN OSTEOSARCOMA CELLS. 32
3.1. INTRODUCTION 32
3.2. RESULTS 35
3.2.1. Effect of paroxetine on the survival of MG63 cells 35
3.2.2. Paroxetine-induced apoptosis in MG63 cells 36
3.2.3. Involvement of MAPKs in paroxetine-induced apoptosis 36
3.2.4. p38 MAPK-regulated caspase-3 activation 37
3.2.5. Effect of paroxetine on [Ca2+]i 38
3.2.6. No effect of chelating Ca2+ with BAPTA on paroxetine-induced cell death 39
3.3. DISCUSSION 40
CHAPTER 4 THR MOLECULAR MECHANISMS OF MAPROTILINE-INDUCED APOPTOSIS IN MURINE NEUROBLASTOMA CELLS 58
4.1. INTRODUCTION 58
4.2. RESULTS 62
4.2.1. Cytotoxic effect of maprotiline on Neuro-2a cells 62
4.2.2. Apoptosis induced by maprotiline 62
4.2.3. Involvement of MAPKs in maprotiline-induced apoptosis 62
4.2.4. JNK-regulated caspase-3 activation 64
4.2.5. Effect of blockade of ERK signaling on maprotiline-induced cell death and apoptosis 64
4.2.6. Blockade of ERK signaling enhances maprotiline-induced caspase-3 activation in Neuro-2a cells 65
4.2.7. Effect of maprotiline on Ca2+ homeostasis 65
4.2.8. Effect of chelating Ca2+ with BAPTA/AM on ERK phosphorylation and maprotiline-induced cell death 66
4.3. DISCUSSION 68
CHAPTER 5 GENERAL CONCLUSION 95
LIST OF FIGURES
Figure 1.1. Selective serotonin reuptake inhibitors (SSRIs). 19
Figure 1.2. Serotonin-norepinephrine reuptake inhibitors (SNRIs) and bupropion. 20
Figure 1.3. Tricyclic antidepressants (TCAs). 21
Figure 1.4. Tetracyclic antidepressants. 22
Figure 1.5. Monoamine oxidase inhibitors (MAOIs). 23
Figure 1.6. New mixed-action agents. 24
Figure 1.7. Mitogen-activated protein kinases signaling cascades. 25

Figure 3.1. Effect of paroxetine on viability of MG63 cells 44
Figure 3.2. Paroxetine-induced apoptosis 46
Figure 3.3. Effect of paroxetine on the phosphorylation of ERK, JNK/SAPK, and p38 MAPK 48
Figure 3.4. Effect of SB203580 on paroxetine-induced apoptosis 49
Figure 3.5. Effect of SB203580 on activation of caspase-3 53
Figure 3.6. Effect of paroxetine on [Ca2+]i 54
Figure 3.7. Independence of paroxetine-induced cell death on preceding [Ca2+]i increases 56

Figure 4.1. Effect of maprotiline on viability of Neuro-2a cells 73
Figure 4.2. Maprotiline induced apoptosis in Neuro-2a cells 75
Figure 4.3. Effect of maprotiline on the phosphorylation of ERK, JNK/SAPK and p38 MAPK 78
Figure 4.4. Effect of SP600125 on maprotiline-induced cell death and apoptosis 79
Figure 4.5. Effect of PD98059 on maprotiline-induced cell death and apoptosis 83
Figure 4.6. Effect of maprotiline on [Ca2+]I 87
Figure 4.7. Interaction of maprotiline-induced cell death, apoptosis and [Ca2+]i increase. 89
Figure 4.8. Effect of BAPTA/AM on maprotiline-induced cell death and apoptosis. 92

Figure 5.1. A novel model for paroxetine-induced apoptosis in MG63 cells. 98
Figure 5.2. A novel model for maprotiline-induced apoptosis in Neuro-2a cells. 99

REFERENCES 100
APPENDIX 1
Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation 121
APPENDIX 2
Publications 130
參考文獻 References
Abdul, M., Logothetis, C. J., Hoosein, N. M. 1995. Growth-inhibitory effects of serotonin uptake inhibitors on human prostate carcinoma cell lines. J. Urol. 154, 247-250.
Aberg, A. Holmberg, G. 1979. Preliminary clinical test of zimelidine (H 102/09), a new 5-HT uptake inhibitor. Acta Psychiatr. Scand. 59, 45-58.
Alkalay, D., Wagner, W. E., Jr., Carlsen, S., Khemani, L., Volk, J., Bartlett, M. F., LeSher, A. 1980. Bioavailability and kinetics of maprotiline. Clin. Pharmacol. Ther. 27, 697-703.
Altiok, N., Koyuturk, M., Altiok, S. 2007. JNK pathway regulates estradiol-induced apoptosis in hormone-dependent human breast cancer cells. Breast Cancer Res. Treat. 105, 247-254.
Alvarez, W., Jr. Pickworth, K. K. 2003. Safety of antidepressant drugs in the patient with cardiac disease: a review of the literature. Pharmacotherapy 23, 754-771.
Anderson, C. N. G., Tolkovsky, A. M. 1999. A role for MAPK/ERK in sympathetic neuron survival: Protection against a p53-dependent, JNK-independent induction of apoptosis by cytosine arabinoside. J. Neurosci. 19, 664-673.
Anisman, H., Zacharko, R. M. 1982. Depression: The predisposing influence of stress. Behav. Brain Sci. 5, 89-136.
Apati, A., Janossy, J., Brozik, A., Bauer, P. I., Magocsi, M. 2003. Calcium induces cell survival and proliferation through the activation of the MAPK pathway in a human hormone-dependent leukemia cell line, TF-1. J. Biol. Chem. 278, 9235-9243.
Axelrod, J., Whitby, L. G., Hertting, G. 1961. Effect of psychotropic drugs on the uptake of H3-norepinephrine by tissues. Science 133, 383-384.
Baldessarini, R. J. 1985. Chemotherapy in psychiatry: Principles and practice. 2nd ed. Cambridge: Harvard University Press.
Barbosa, F. B., Capito, K., Kofod, H., Thams, P., 2002. Pancreatic islet insulin secretion and metabolism in adult rats malnourished during neonatal life. Br. J. Nutr. 87, 147-155.
Bartholoma, P., Erlandsson, N., Kaufmann, K., Rossler, O. G., Baumann, B., Wirth, T., Giehl, K. M., Thiel, G. 2002. Neuronal cell death induced by antidepressants: lack of correlation with Egr-1, NF-kappa B and extracellular signal-regulated protein kinase activation. Biochem. Pharmacol. 63, 1507-1516.
Basset, O., Boittin, F. X., Cognard, C., Constantin, B., Ruegg, U. T. 2006. Bcl-2 overexpression prevents calcium overload and subsequent apoptosis in dystrophic myotubes. Biochem. J. 395, 267-276.
Baumann, P. A., Maitre, L. 1979. Neurobiochemical aspects of maprotiline (Ludiomil) action. J. Int. Med. Res. 7, 391-400.
Berridge, M. J., Lipp, P., Bootman, M. D. 2000. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1, 11-21.
Biagioli, M., Pifferi, S., Ragghianti, M., Bucci, S., Rizzuto, R., Pinton, P. 2008. Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium 43, 184-195.
Bloch, R. G., Dooneief, A. S., Buchberg, A. S., Spellman, S. 1953. The clinical effect of isoniazid and iproniazid in the treatment of pulmonary tuberculosis. Trans. Annu. Meet. Natl. Tuberc. Assoc. 49, 177-178.
Boatright, K. M., Salvesen, G. S. 2003. Mechanisms of caspase activation. Curr. Opin. Cell Biol. 15, 725-731.
Bootman, M. D., Berridge, M. J., Roderick, H. L. 2002. Calcium signalling: more messengers, more channels, more complexity. Curr. Biol. 12, R563-R565.
Bost, F., Aouadi, M., Caron, L., Binetruy, B. 2005. The role of MAPKs in adipocyte differentiation and obesity. Biochimie 87, 51-56.
Boulton, T. G., Nye, S. H., Robbins, D. J., Ip, N. Y., Radziejewska, E., Morgenbesser, S. D., DePhino, R. A., Panayotatos, N., Cobb, M. H., Yancopoulos, G. D. 1991. ERK's: A family of protein serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65, 663-675.
Buckley, S., Driscoll, B., Barsky, L., Weinberg, K., Anderson, K., Warburton, D. 1999. ERK activation protects against DNA damage and apoptosis in hyperoxic rat AEC2. Am. J. Physiol. 277, 159-166.
Burckhardt, D., Raeder, E., Muller, V., Imhof, P., Neubauer, H. 1978. Cardiovascular effects of tricyclic and tetracyclic antidepressants. JAMA 239, 213-216.
Cardone, M. H., Salvesen, G. S., Widmann, C., Johnson, G., Frisch, S. M. 1997. The regulation of anoikis: MEKK-1 activation requires cleavage by caspases. Cell 90, 315-323.
Carlsson, A., Fuxe, K., Ungerstedt, U. 1968. The effect of imipramine on central 5-hydroxytryptamine neurons. J. Pharm. Pharmacol. 20, 150-151.
Carrasco, J. L., Sandner, C. 2005. Clinical effects of pharmacological variations in selective serotonin reuptake inhibitors: an overview. Int. J. Clin. Pract. 59, 1428-1434.
Chang, L., Karin, M. 2001. Mammalian MAP kinase signalling cascades. Nature 410, 37-40.
Chaudhary, P. M., Eby, M. T., Jasmin, A., Hood, L. 1999. Activation of c-Jun N terminal kinase/stress-activated protein kinase by overexpression of caspase 8 and its homologs. J. Biol. Chem. 274, 19211-19219.
Chen, K., Tu, Y., Zhang, Y., Blair, H. C., Zhang, L., Wu, C. 2008. PINCH-1 Regulates the ERK-Bim Pathway and Contributes to Apoptosis Resistance in Cancer Cells. J. Biol. Chem. 283, 2508-2517.
Chou, C. T., He, S., Jan, C. R. 2007. Paroxetine-induced apoptosis in human osteosarcoma cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation. Toxicol. Appl. Pharmacol. 218, 265-273.
Coffey, R. N., Watson, R. W., Fitzpatrick, J. M. 2001. Signaling for the caspases: their role in prostate cell apoptosis. J. Urol. 165, 5-14.
Cotter, T. G. 1992. Induction of apoptosis in cells of the immune system by cytotoxic stimuli. Semin. Immunol. 4, 399-405.
Cotzias, G. C., Tang, L. C., Ginos, J. Z. 1974. Monoamine oxidase and cerebral uptake of dopaminergic drugs. Proc. Natl. Acad. Sci. U. S. A 71, 2715-2719.
Cross, T.G., Scheel-Toellner, D., Henriquez, N. V., Deacon, E., Salmon, M., Lord, J. M. 2000. Serine/threonine protein kinases and apoptosis. Exp. Cell Res. 256, 34-41.
Danial, N. N., Korsmeyer, S. J. 2004. Cell death: critical control points. Cell 116, 205-219.
Das, S., Bhattacharyya, S., Ghosh, S., Majumdar, S., 1999. TNF-alpha induced altered signaling mechanism in human neutrophil. Mol. Cell Biochem. 197, 97-108.
Degterev, A., Boyce, M., Yuan, J., 2003. A decade of caspases. Oncogene 22, 8543-8567.
del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., Nunez, G. 1997. Interleukin 3-induced phosphorylation of BAD through protein kinase Akt. Science 278, 687-689.
DeVane, C. L., Grothe, D. R., Smith, S. L. 2002. Pharmacology of antidepressants: focus on nefazodone. J. Clin. Psychiatry 63 Suppl 1, 10-17.
Dhanasekaran, D. N., Johnson, G. L. 2007. MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 26, 3097-3099.
Duvernay, M. T., Filipeanu, C. M., Wu, G. 2005. The regulatory mechanisms of export trafficking of G protein-coupled receptors. Cell. Signal. 17, 1457-1465.
Dwoskin, L. P., Rauhut, A. S., King-Pospisil, K. A., Bardo, M. T. 2006. Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS. Drug Rev. 12, 178-207.
Dziak, R., Yang, B. M., Leung, B. W., Li, S., Marzec, N., Margarone, J., Bobek, L. 2003. Effects of sphingosine-1-phosphate and lysophosphatidic acid on human osteoblastic cells. Prostaglandins Leukot. Essent. Fatty Acids 68, 239-249.
Earnshaw, W. C., Martins, L. M., Kaufmann, S. H. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383-424.
Erhardt, P., Schremser, E. J., Cooper, G. M. 1999. B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol. Cell. Biol. 19, 308-315.
Ferrari, D., Pinton, P., Szabadkai, G., Chami, M., Campanella, M., Pozzan, T., Rizzuto, R. 2002. Endoplasmic reticulum, Bcl-2 and Ca2+ handling in apoptosis. Cell Calcium 32, 413-420.
Foley, K. F., DeSanty, K. P., Kast, R. E. 2006. Bupropion: pharmacology and therapeutic applications. Expert. Rev. Neurother. 6, 1249-1265.
Frasch, S. C., Nick, J. A., Fadok, V. A., Bratton, D. L., Worthen, G. S., Henson, P. M. 1998. p38 mitogen-activated protein kinase-dependent and independent pathways leading to apoptosis in human neutrophils. J. Biol. Chem. 273, 8389-8397.
Gao, J., Li, J., Ma, L. 2005. Regulation of EGF-induced ERK/MAPK activation and EGFR internalization by G protein-coupled receptor kinase 2. Acta Biochim. Biophys. Sin. 37, 525-531.
Gerner, P. 2004. Tricyclic antidepressants and their local anesthetic properties: from bench to bedside and back again. Reg Anesth. Pain Med. 29, 286-289.
Gilmor, M. L., Owens, M. J., Nemeroff, C. B. 2002. Inhibition of norepinephrine uptake in patients with major depression treated with paroxetine. Am. J. Psychiatry 159, 1702-1710.
Glassman, A. H. 1998. Cardiovascular effects of antidepressant drugs: updated. Int. Clin. Psychopharmacol. 5, S25-S30.
Glowinski, J. Axelrod, J. 1964. Inhibition of uptake of tritiated-noradrenaline in the intact rat brain by imipramine and structurally related compounds. Nature 204, 1318-1319.
Greulich, H., Eriksson, R. L. 1998. Analysis of MEK1 signaling in cell proliferation and transformation. J. Biol. Chem. 273, 13280-13288.
Grynkiewicz, G., Poenie, M., Tsien, R. Y. 1985. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-3450.
Halet, G., Marangos, P., Fitzharris, G., Carroll, J. 2003. Ca2+ oscillations at fertilization in mammals. Biochem. Soc. Trans. 31, 907-911.
Han, J., Bibbs, L., Ulevitch, R. J. 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808-811.
Haria, M., Fitton, A., McTavish, D. 1994. Trazodone. A review of its pharmacology, therapeutic use in depression and therapeutic potential in other disorders. Drugs Aging 4, 331-355.
Hengartner, M. O. 2000. The biochemistry of apoptosis. Nature 407, 770-776.
Herr, I., Wilhelm, D., Meyer, E., Jeremais, I., Angel, P., Debatin, K. M. 1999. JNK/SAPK activity contributes to TRAIL-induced apoptosis. Cell Death Diff. 6, 130-135.
Holtzheimer, P. E., III, Nemeroff, C. B. 2006. Advances in the treatment of depression. NeuroRx. 3, 42-56.
Howland, R. H. 2006. MAOI antidepressant drugs. J. Psychosoc. Nurs. Ment. Health Serv. 44, 9-12.
Hsu, S. S., Huang, C. J., Chen, J. S., Cheng, H. H., Chang, H. T., Jiann, B. P., Lin, K. L., Wang, J. L., Ho, C. M., Jan, C. R. 2004. Effect of nortriptyline on intracellular Ca2+ handling and proliferation in human osteosarcoma cells. Basic Clin. Pharmacol. Toxicol. 95, 124-130.
Ichijo, H. 1999. From receptor to stress-activated MAP kinases. Oncogene 18, 6087-6093.
Idris, A., Mrak, E., Greig, I., Guidobono, F., Ralston, S. H., van 't Hof, R. 2008. ABD56 causes osteoclast apoptosis by inhibiting the NFkappaB and ERK pathways. Biochem. Biophys. Res. Commun. 371, 94-98.
Iversen, L. L. 1965. Inhibition of noradrenaline uptake by drugs. J. Pharm. Pharmacol. 17, 62-64.
Jan, C. R., Lu, Y. C., Tseng, L. L., Jiann, B. P., Chang, H. T., Wang, J. L., Chen, W. C., Huang, J. K. 2003. Effect of the antidepressant desipramine on cytosolic Ca2+ movement and proliferation in human osteosarcoma cells. Pharmacology 69, 190-196.
Jayaraman, T., Marks, A. R. 1997. T cells deficient in inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol. Cell Biol. 17, 3005-3012.
Jiang, D. J., Jia, S. J., Dai, Z., Li, Y. J. 2006. Asymmetric dimethylarginine induces apoptosis via p38 MAPK/caspase-3-dependent signaling pathway in endothelial cells. J. Mol. Cell Cardiol. 40, 529-539.
Judd, F. Boyce, P. 1999. Tricyclic antidepressants in the treatment of depression. Do they still have a place? Aust. Fam. Physician 28, 809-813.
Jun, C. D., Pae, H. O., Kwak, H. J., Yoo, J. C., Choi, B. M., Oh, C. D., Chun, J. S., Paik, S. G., Park, Y. H., Chung, H. T. 1999. Modulation of nitrix oxide-induced apoptotic death of HL-60 cells by protein kinase C and protein kinase A through mitogen-activated protein kinases and CPP32-like protease pathways. Cell. Immunol. 194, 36-46.
Katz, R. L., Roth, K. A., Carrol, B. J. 1981. Acute and chronic stress effects on open field activity in the rat: Implications for a model of depression. Neurosci. Biobehav. Rev. 5, 247-251.
Kerr, J. F., Winterford, C. M., Harmon, B. V. 1994. Apoptosis. Its significance in cancer and cancer therapy. Cancer 73, 2013-2026.
Kersun, L. S. Elia, J. 2007. Depressive symptoms and SSRI use in pediatric oncology patients. Pediatr. Blood Cancer 49, 881-887.
Kim, H. J., Chakravarti, N., Oridate, N., Choe, C., Claret, F. X., Lotan, R. 2006. N-(4-hydroxyphenyl)retinamide-induced apoptosis triggered by reactive oxygen species is mediated by activation of MAPKs in head and neck squamous carcinoma cells. Oncogene 25, 2785-2794.
Kong, A. N., Yu, R., Chen, C., Mandlekar, S., Primiano, T. 2000. Signal transduction events elicited by natural products: role of MAPK and caspase pathways in homeostatic response and induction of apoptosis. Arch. Pharm. Res. 23, 1-16.
Kripke, C. 2004. Optimal dosage of tricyclic antidepressants. Am. Fam. Physician 70, 1270.
Kroemer, G., Martin, S. J. 2005. Caspase-independent cell death. Nat. Med. 11, 725-730.
Kuribayashi, K., Mayes, P. A., El Deiry, W. S. 2006. What are caspases 3 and 7 doing upstream of the mitochondria? Cancer Biol. Ther. 5, 763-765.
Kyriakis, J., Woodgett, J. R. 1994. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369, 156-160.
Lakhani, S. A., Masud, A., Kuida, K., Porter, G. A., Jr., Booth, C. J., Mehal, W. Z., Inayat, I., Flavell, R. A. 2006. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847-851.
Lavrik, I. N., Golks, A., Krammer, P. H. 2005. Caspases: pharmacological manipulation of cell death. J. Clin. Invest. 115, 2665-2672.
Lee, K. C., Tseng, L. L., Chen, Y. C., Wang, J. W., Lu, C. H., Cheng, J. S., Wang, J. L., Lo, Y. K., Jan, C. R. 2001. Mechanisms of histamine-induced intracellular Ca2+ release and extracellular Ca2+ entry in MG63 human osteosarcoma cells. Biochem. Pharmacol. 61, 1537-1541.
Leger, D. Y., Liagre, B., Beneytout, J. L. 2006. Role of MAPKs and NF-kappaB in diosgenin-induced megakaryocytic differentiation and subsequent apoptosis in HEL cells. Int. J. Oncol. 28, 201-207.
Levkovitz, Y., Gil-Ad, I., Zeldich, E., Dayag, M., Weizman, A. 2005. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J. Mol. Neurosci. 27, 29-42.
Lewis, T. S., Shapiro, P. S., Ahn, N. G. 1998. Signal transduction through MAP kinase cascades. Adv. Cancer Res. 74, 49-139.
Li, M., Kondo, T., Zhao, Q. L., Li, F. J., Tanabe, K., Arai, Y., Zhou, Z. C., Kasuya, M. 2000. Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochon. J. Biol. Chem. 275, 39702-39709.
Li, M., Xia, T., Jiang, C. S., Li, L. J., Fu, J. L., Zhou, Z. C. 2003. Cadmium directly induced the opening of membrane permeability pore of mitochondria which possibly involved in cadmium-triggered apoptosis. Toxicology 194, 19-33.
Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., Wang, X. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase 9 complex initiates an apoptotic protease. Cell 91, 479-489.
Li, S. W., Yan, H. Q. 1989. Maprotiline (Ludiomil) treatment of mental depression--a clinical report of 65 cases. Proc. Chin Acad. Med. Sci. Peking. Union Med. Coll. 4, 139-141.
Littlejohn, G. O. Guymer, E. K. 2006. Fibromyalgia syndrome: which antidepressant drug should we choose. Curr. Pharm. Des 12, 3-9.
Liu, Q., Chen, T., Chen, H., Zhang, M., Li, N., Lu, Z., Ma, P., Cao, X. 2004. Triptolide (PG-490) induces apoptosis of dendritic cells through sequential p38 MAP kinase phosphorylation and caspase 3 activation. Biochem. Biophys. Res. Commun. 319, 980-986.
Lowes, V. L., Ip, N. Y., Wong, Y. H. 2002. Integration of signals from receptor tyrosine kinases and g protein-coupled receptors. Neurosignals. 11, 5-19.
Maitre, L., Waldmeier, P. C., Baumann, P. A., Staehelin, M. 1974. Effect of maprotiline, a new antidepressant drug, on serotonin uptake. Adv. Biochem. Psychopharmacol. 10, 297-304.
Mann, J. J. 2005. The medical management of depression. N. Engl. J. Med. 353, 1819-1834.
Martlew, V. J. 1986. Immune haemolytic anaemia and nomifensine treatment in north west England 1984-85: report of six cases. J. Clin. Pathol. 39, 1147-1150.
Mattson, M. P., Chan, S. L. 2003. Calcium orchestrates apoptosis. Nat. Cell Biol. 5, 1041-1043.
Matuszyk, J., Kobzdej, M., Ziolo, E., Kalas, W., Kisielow, P., Strzadala, L. 1998. Thymic lymphomas are resistant to Nur77-mediated apoptosis. Biochem. Biophys. Res. Commun. 249, 279-282.
Medical Economics. 2006. Physician’s desk reference. Montvale, NJ: Medical Economics.
Mendelson, W. B. 2005. A review of the evidence for the efficacy and safety of trazodone in insomnia. J. Clin. Psychiatry 66, 469-476.
Mendlewicz, J. Youdim, M. B. 1978. Anti-depressant potentiation of 5-hydroxytryptophan by L-deprenyl, an MAO "type B" inhibitor. J. Neural Transm. 43, 279-286.
Milosevic, J., Juch, F., Storch, A., Schwarz, J. 2006. Low extracellular calcium is sufficient for survival and proliferation of murine mesencephalic neural precursor cells. Cell Tissue Res. 324, 377-384.
Montgomery, S. A. 1980. Maprotiline, nomifensine, mianserin, zimelidine: a review of antidepressant efficacy in in-patients. Neuropharmacology 19, 1185-1190.
Muscarella, D. E., Bloom, S. E. 2003. Cross-linking of surface IgM in the Burkitt's lymphoma cell line ST486 provides protection against arse. J. Biol. Chem. 278, 4358-4367.
Nagata, S. 1997. Apoptosis by death factor. Cell 88, 355-365.
Nagata, Y., Todokoro, K. 1999. Requirement of activation of JNK and p38 for environmental stress-induced erythroid differentiation and apoptosis and of inhibition of ERK for apoptosis. Blood 94, 853-863.
Nakagawa, T. Yuan, J. 2000. Cross-talk between two cysteine protease families. Activation of caspase-12 by calpain in apoptosis. J. Cell Biol. 150, 887-894.
Namgaladze, D., Kollas, A., Brüne, B. 2008. Oxidized LDL attenuates apoptosis in monocytic cells by activating ERK signaling. J. Lipid Res. 49, 58-65.
Nebreda, A. R., Porras, A. 2000. p38 MAP kinases: beyond the stress response. Trends Biochem. Sci. 25, 257-260.
Nemeroff, C. B. 1998. The neurobiology of depression. Sci. Am. 278, 42-49.
Nicoletti, I., Migliorati, G., Pagliacci, M. C., Grignani, F., Riccardi, C. 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271-279.
Nishioka, C., Ikezoe, T., Yang, J., Takeshita, A., Taniguchi, A., Komatsu, N., Togitani, K., Koeffler, H. P., Yokoyama, A. 2008. Blockade of MEK/ERK signaling enhances sunitinib-induced growth inhibition and apoptosis of leukemia cells possessing activating mutations of the FLT3 gene. Leuk. Res. 32, 865-872.
Nusuetrong, P., Yoshida, M., Tanitsu, M. A., Kikuchi, H., Mizugaki, M., Shimazu, K., Pengsuparp, T., Meksuriyen, D., Oshima, Y., Nakahata, N. 2005. Involvement of reactive oxygen species and stress-activated MAPKs in satratoxin H-induced apoptosis. Eur. J. Pharmacol. 507, 239-246.
Nutt, D. J. 2002a. The neuropharmacology of serotonin and noradrenaline in depression. Int. Clin. Psychopharmacol. 17 Suppl 1:S1-12.
Nutt, D. J. 2002b. Tolerability and safety aspects of mirtazapine. Hum. Psychopharmacol. 17 Suppl 1:S37-S41.
Orrenius, S., Zhivotovsky, B., Nicotera, P. 2003. Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552-565.
Peyruchaud, O., Mosher, D. F. 2000. Differential stimulation of signaling pathways initiated by Edg-2 in response to lysophosphatidic acid or sphingosine-1-phosphate. Cell Mol. Life Sci. 57, 1109-1116.
Pinder, R. M., Brogden, R. N., Speight, T. M., Avery, G. S. 1977. Maprotiline: a review of its pharmacological properties and therapeutic efficacy in mental depressive states. Drugs 13, 321-352.
Post, A., Crochemore, C., Uhr, M., Holsboer, F., Behl, C. 2000. Differential induction of NF-kappaB activity and neural cell death by antidepressants in vitro. Eur. J. Neurosci. 12, 4331-4337.
Puddicombe, S. M., Davies, D. E. 2000. The role of MAP kinases in intracellular signal transduction in bronchial epithelium. Clin. Exp. Allergy 30, 7-11.
Reddy, K. B., Nabha, S. M., Atanaskova, N. 2003. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 22, 395-403.
Riccardi, C., Nicoletti, I. 2006. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc. 1, 1458-1461.
Richelson, E. 1990. Antidepressants and brain neurochemistry. Mayo Clin. Proc. 65, 1227-1236.
Rinne, U. K. 1978. Recent advances in research on Parkinsonism. Acta Neurol. Scand. Suppl 67, 77-113.
Risbud, M. V., Fertala, J., Vresilovic, E. J., Albert, T. J., Shapiro, I. M. 2005. Nucleus pulposus cells upregulate PI3K/Akt and MEK/ERK signaling pathways under hypoxic conditions and resist apoptosis induced by serum withdrawal. Spine 30, 882-889.
Rizzuto, R., Duchen, M. R., Pozzan, T. 2004. Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004, re1.
Rizzuto, R., Pinton, P., Ferrari, D., Chami, M., Szabadkai, G., Magalhaes, P. J., Di Virgilio, F., Pozzan, T. 2003. Calcium and apoptosis: facts and hypotheses. Oncogene 22, 8619-8627.
Robertson, J. D., Orrenius, S. 2000. Molecular mechanisms of apoptosis induced by cytotoxic chemicals. Crit Rev. Toxicol. 30, 609-627.
Roderick, H. L., Bootman, M. D. 2005. Redoxing calcium from the ER. Cell 120, 4-5.
Ross, S. B. Renyi, A. L. 1969. Inhibition of the uptake of tritiated 5-hydroxytryptamine in brain tissue. Eur. J. Pharmacol. 7, 270-277.
Ross, S. B., Renyi, A. L., and Ogren, S. O. 1971. A comparison of the inhibitory activities of iprindole and imipramine on the uptake of 5-hydroxytryptamine and noradrenaline in brain slices. Life Sci. I. 10, 1267-1277.
Rouzaire-Dubois, B., Dubois, J. M. 2004. Calcium-dependent proliferation of NG108-15 neuroblastoma cells. Gen. Physiol Biophys. 23, 231-239.
Ryan, N. D. 1990. Pharmacotherapy of adolescent major depression: beyond TCAs. Psychopharmacol. Bull. 26, 75-79.
Sanchez, A. M., Malagarie-Cazenave, S., Olea, N., Vara, D., Chiloeches, A., Diaz-Laviada, I. 2007. Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis. 12, 2013-2024.
Sanchez-Perez, I., Murguia, J. R., R. Perona, Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16, 533-540.
Saris, N.E., Carafoli, E. 2005. A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry 70, 187-194.
Schaeffer, H. J., Weber, M. J. 1999. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell Biol. 19, 2435-2444.
Scheid, M., Duronio, V. 1998. Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: Involvement of MEK upstream of Bad phosphorylation. Proc. Natl. Acad. Sci. USA 95, 7439-7444.
Schildkraut, J. 1965. The catecholamine hypothesis of affective disorders a review of supporting evidence. Am. J. Psychiatry 122, 509-522.
Seminara, A. R., Ruvolo, P. P., Murad, F. 2007. LPS/IFNgamma-induced RAW 264.7 apoptosis is regulated by both nitric oxide-dependent and -independent pathways involving JNK and the Bcl-2 family. Cell Cycle 6, 1772-1778.
Serafeim, A., Holder, M. J., Grafton, G., Chamba, A., Drayson, M. T., Luong, Q. T., Bunce, C. M., Gregory, C. D., Barnes, N. M., Gordon, J. 2003. Selective serotonin reuptake inhibitors directly signal for apoptosis in biopsy-like Burkitt lymphoma cells. Blood 101, 3212-3219.
Sheehan, D. V., Burnham, D. B., Iyengar, M. K., Perera, P. 2005. Efficacy and tolerability of controlled-release paroxetine in the treatment of panic disorder. J. Clin. Psychiatry 66, 34-40.
Shi, Y. 2002. Mechanisms of caspase activation and inhibition during apoptosis. Mol. Cell 9, 459-470.
Shimizu, T., Nakazato, T., Xian, M. J., Sagawa, M., Ikeda, Y., Kizaki, M. 2006. Resveratrol induces apoptosis of human malignant B cells by activation of caspase-3 and p38 MAP kinase pathways. Biochem. Pharmacol. 71, 742-750.
Sims, A. C. 1980. Comparison of the efficacy of sustained-release amitriptyline with maprotiline in the treatment of depressive illness. Curr. Med. Res. Opin. 6, 534-539.
Slattery, D. A., Hudson, A. L., Nutt, D. J. 2004. Invited review: the evolution of antidepressant mechanisms. Fundam. Clin. Pharmacol. 18, 1-21.
Spanova, A., Kovaru, H., Lisa, V., Lukasova, E., Rittich, B. 1997. Estimation of apoptosis in C6 glioma cells treated with antidepressants. Physiol Res. 46, 161-164.
Spina, E., Scordo, M. G. 2002. Clinically significant drug interactions with antidepressants in the elderly. Drugs Aging 19, 299-320.
Stennicke, H. R., Salvesen, G. S. 2000. Caspases-controlling intracellular signals by protease zymogen activation. Biochim. Biophys. Acta 1477, 299-306.
Su, B., Karin, M., 1996. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr. Opinion Immunol. 8, 402-411.
Suh, Y. 2002. Cell signaling in aging and apoptosis. Mech. Ageing Dev. 123, 881-890.
Szalai, G., Krishnamurthy, R., Hajnoczky, G. 1999. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J. 18, 6349-6361.
Tang, T. S., Slow, E., Lupu, V., Stavrovskaya, I. G., Sugimori, M., Llinás, R., Kristal, B.S., Hayden, M.R., Bezprozvanny, I. 2005. Proc. Natl. Acad. Sci. U.S.A. 102, 2602-2607.
Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R., Dawson, A. P. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc. Natl. Acad. Sci. U.S.A. 87, 2466-2470.
Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R., Dawson, A. P. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. U. S. A 87, 2466-2470.
Thornberry, N. A. Lazebnik, Y. 1998. Caspases: enemies within. Science 281, 1312-1316.
Tinel, H., Cancela, J. M., Mogami, H., Gerasimenko, J. V., Gerasimenko, O. V., Tepikin, A. V., Petersen, O. H. 1999. Active mitochondria surrounding the pancreatic acinar granule region prevent spreading of inositol trisphosphate-evoked local cytosolic Ca2+ signals. EMBO J. 18, 4999-5008.
Tollefson, G. D., Montague-Clouse, J., Lesan, T., Garvey, M. J. 1989. Pharmacokinetic properties of maprotiline in geriatric depression. J. Clin. Psychopharmacol. 9, 313-315.
Turk, B., Stoka, V. 2007. Protease signalling in cell death: caspases versus cysteine cathepsins. FEBS Lett. 581, 2761-2767.
Velez, L. I., Shepherd, G., Roth, B. A., Benitez, F. L. 2004. Serotonin syndrome with elevated paroxetine concentrations. Ann. Pharmacother. 38, 269-272.
Wada, T., Penninger, J. M. 2004. Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23, 2838-2849.
Wagstaff, A. J., Cheer, S. M., Matheson, A. J., Ormrod, D., Goa, K. L. 2002. Paroxetine: an update of its use in psychiatric disorders in adults. Drugs 62, 655-703.
Wang, X., Martindale, J. L., Liu, Y., Holbrook, N. J. 1998. The cellular response to oxidative tress: Influences of mitogen-activated protein kinase signaling pathways on cell survival. Biochem. J. 333, 291-300.
Waring, P. 2005. Redox active calcium ion channels and cell death. Arch. Biochem. Biophys. 434, 33-42.
Wecker, L., James, S., Copeland, N., Pacheco, M. A. 2003. Transdermal selegiline: targeted effects on monoamine oxidases in the brain. Biol. Psychiatry 54, 1099-1104.
Weilburg, J. B. 2004. An overview of SSRI and SNRI therapies for depression. Manag. Care 13, 25-33.
Werry, T. D., Wilkinson, G. F., Willars, G. B. 2003. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem. J. 374, 281-296.
Widlak, P. 2000. The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim. Pol. 47, 1037-1044.
Widlak, P., Garrard, W. T. 2005. Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J. Cell Biochem. 94, 1078-1087.
Widmann, C., Gibson, S., Jarpe, M. D., Johnson, G. L.1999. Mitogen-activated protein kinase: Conservation of a three kinase module from yeast to human. Physiol. Rev. 79, 143-180.
Widmann, C., Gibson, S., Johnson, G. L. 1998. Caspase dependent cleavage of signaling proteins during apoptosis—A turn-off mechanism for anti-apoptotic signals. J. Biol. Chem. 273, 7141-7147.
Wilkes, S. 2006. Bupropion. Drugs Today (Barc.) 42, 671-681.
Witchel, H. J., Hancox, J. C., Nutt, D. J. 2003. Psychotropic drugs, cardiac arrhythmia, and sudden death. J. Clin. Psychopharmacol. 23, 58-77.
Xia, Z., Bergstrand, A., DePierre, J. W., Nassberger, L. 1999. The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J. Biochem. Mol. Toxicol. 13, 338-347.
Xia, Z., DePierre, J. W., Nassberger, L. 1996a. The tricyclic antidepressants clomipramine and citalopram induce apoptosis in cultured human lymphocytes. J. Pharm. Pharmacol. 48, 115-116.
Xia, Z., DePierre, J. W., Nassberger, L. 1996b. Dysregulation of bcl-2, c-myc, and Fas expression during tricyclic antidepressant-induced apoptosis in human peripheral lymphocytes. J. Biochem. Toxicol. 11, 203-204.
Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J., Greenberg, M. E. 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326-1331.
Xia, Z., Karlsson, H., Depierre, J. W., Nassberger, L. 1997. Tricyclic antidepressants induce apoptosis in human T lymphocytes. Int. J. Immunopharmacol. 19, 645-654.
Yang, E., Zha, J., Jockel, J., Boise, L. H., Thompson, C. B., Korsmeyer, S. J. 1995. Bad, a heterodimeric partner for Bcl-xL and Bcl-2, displaces Bax and promotes cell death. Cell 80, 285-291.
Yang, L. P., Zhu, X. A., Tso, M. O. 2007. Role of NF-kappaB and MAPKs in light-induced photoreceptor apoptosis. Invest Ophthalmol. Vis. Sci. 48, 4766-4776.
Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T., Tohyama, M. 2001. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J. Biol. Chem. 276, 13935-13940.
Zha, J., Harada, H., Yang, E., Jockel, J., Korsmeyer, S. J.1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not Bcl-X. Cell 87, 619-628.
Zou, H., Li, Y., Liu, X., Wang, X. 1999. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol. Chem. 274, 11549-11556.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code