Responsive image
博碩士論文 etd-0627111-120806 詳細資訊
Title page for etd-0627111-120806
論文名稱
Title
DFF在RZ-DPSK系統下長距離光纖通訊系統Dispersion Map設計和其有效面積之影響之理論模擬探討與研究
A Theoretical Study to Design an Improved Dispersion Map and the Fiber Effective Area Tolerance for the Long-haul RZ-DPSK System Using the DFF
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-05-31
繳交日期
Date of Submission
2011-06-27
關鍵字
Keywords
長距離傳輸、歸零碼差分向一鍵調變、色散平坦光纖、色散圖、有效面積
effective area, Dispersion map, DFF, Long-haul transmission, RZ-DPSK
統計
Statistics
本論文已被瀏覽 5640 次,被下載 0
The thesis/dissertation has been browsed 5640 times, has been downloaded 0 times.
中文摘要
在現今資訊爆發的年代,對於資訊傳輸的速率與容量的需求越來越大。所以光纖通訊的高傳輸與高容量就正好符合上述需求,所以去了解光纖通訊這項技術來改善傳輸的效能是一個非常重要的課題。以目前科技來說,色散平坦光纖(DFF)以及歸零碼差分向一鍵調變(RZ-DPSK),都兼具了有效改善傳輸效能的特色,所以把這兩種技術作結合將會是一門改善系統傳輸效能的重要技術。
並且在目前的長距離傳輸光纖通訊系統中色散圖是一項相當重要的技術,並且已經廣泛使用在長距離光纖通訊系統中,並且之前的研究曾經證明blockless type與block type之比較,其結果證明blockless type色散圖有較好的系統效能,所以致力於改善block type之系統效能為目前課題。先前研究使用位移色散圖法(Shifting dispersion map)與傾斜色散圖法(Tilting dispersion map)去減少零色散點,但是位移色散圖法(Shifting dispersion map)方法是較無效的,其傾斜色散圖法(Tilting dispersion map)是較有效。
所以在這篇論文中,我們藉由數直模擬的方法發現到,延續色散圖之研究使用分階位移色散圖法(Split shifting dispersion map)與分階傾斜色散圖法(Split tilting dispersion map),並且使用不同的光纖色散補償機制也可以決定系統傳輸效能好壞,所以我嘗試著去設計更理想化的色散圖,以期能在傳輸效能上有所改進。
並且將探討DFF光纖的有效面積,因為影響光纖傳輸系統的效能其有效面積也是重要因素。
Abstract
Long-haul optical fiber communication system is an important technology to support the latest broadband communication in the world, and there is strong competition in optical long-haul transmission to achieve high channel bit rates and large transmission capacity. Therefore, it is important to study a technology to improve the performance of such system. As we have already known, return-to-zero differential phase shift keying (RZ-DPSK) is an attractive solution to improve the long distance transmission system performance compared to the conventional on-off keying (OOK) in a 10-Gb/s system, because it has a high nonlinear tolerance.
The dispersion flattened fiber (DFF) is attractive for its ability to improve the system performance. Therefore, it is possible to improve the transmission performance by a combination of the RZ-DPSK and the DFF, and one important technology of the current long-haul optical fiber communication system is the dispersion map. And it is widely deployed for already installed undersea optical fiber communication system in the world.
A previous study reported that the blockless type dispersion map showed a superior performance than the block type dispersion map, and some efforts to improve the transmission performance of the block type map were conducted. Fundamental idea to improve the transmission performance of the block type map is to reduce the zero crossing points, and one idea is to shift the map toward the positive or the negative cumulative dispersion to reduce the zero crossing points within the map, but it was not so successful. The other idea is to tilt the dispersion map and it was more successful but not good enough.
In this master thesis, I continued the study to improve the long-haul RZ-DPSK system performance using the block type dispersion map. One new idea of the dispersion map shifting, the split shifting, was tried, and another new idea of the dispersion map tilting, the split tilting, was examined. The performance with different repeater output power and different compensation scheme within the dispersion map was simulated by a numerical simulator .The goal is, following previous research, to clarify improved dispersion map design of the long-haul RZ-DPSK based transmission and find the effective method to improve the transmission performance.
In addition, I also investigate tolerance of the effective area of the transmission fiber theoretically for the long-haul RZ-DPSK system based on the DFF.
目次 Table of Contents
◎ 致謝 ..................vii

◎ Abstract...............viii

◎ 中文摘要...............x

Chapter1 Introduction
1.1 Background of long-haul optical fiber communication system.....1
1.2 Motivation of this study.......................................3
1.3 Structure of this thesis.......................................5
References in this chapter.........................................6

Chapter2 Theoretical and technical background of this study
2.1 Theoretical background.......................7
2.1.1 Nonlinear Schrödinger equation..........12
2.1.2 Split-step Fourier method...............13
2.2 Technical background.........................16
2.2.1 Dispersion map..........................16
2.2.2 Dispersion flattened fiber..............18
References in this chapter.......................21

Chapter3 Explanation of the simulation model.....22
References in this chapter.......................25

Chapter 4 Efforts to improve the transmission performance of the block-type dispersion map
4.1 Explanation of the basic ideas...............26
4.1.1 Dispersion map split shifting...............27
4.1.2 Dispersion map split tilting...............29

4.2 Results of the dispersion map split shifting.......31
4.2.1 Detail of the dispersion map..................31
4.2.2 Results and discussions..........................36

4.3 Results of the dispersion map split tilting........38
4.3.1 Detail of the dispersion map..................38
Part 1 : SLA:IDF=64:36.................................38
Part 2 : SLA:IDF=63:37.................................41
Part 3 : SLA:IDF=62:38.................................43
Part 4 : SLA:IDF=61:39.................................45
Part 5 : SLA:IDF=60:40.................................47
4.3.2 Results and discussions.......................49
References in this chapter.............................53

Chapter 5 Tolerance of the fiber effective area
5.1.1 Fiber effective area studied for the simulation..54
5.1.2 Results and discussions..........................55

Chapter 6 Conclusion...................................58
參考文獻 References
[1] http://en.wikipedia.org/wiki/Fiber-optic_communication
[2] Gerd Keiser., Optical Fiber Communication (Fourth Ed.),
[3]C. Xu, X. Liu, L. F. Mollenauer, and X. Wei, ”Comparison of Return-to-Zero Differential Phase-Shift Keying and ON–OFF Keying in Long-Haul Dispersion Managed Transmission,” IEEE Photon. Technology Letter, vol. 15, no. 4, pp. 123-123, April 2003.
[4] Hidenori Taga, ”A theoretical investigation of the long-haul RZDPSK system performance using DFF and NZDSF”, Optics Express, vol. 17, no. 8, pp. 6032-1234, April 2009.
[5] Wei-Hung Chung and Hidenori Taga “A Theoretical Study of the Effect of Zero-crossing Points within the Dispersion Map upon a 6000km RZ-DPSK Transmission System using DFF” OPT conference 2009
[6] “Theoretical Study to Investigate the Optimum Dispersion Map Design for Long-haul RZ-DPSK System Using DFF,”國立中山大學/光電工程研究所/97/碩士/鍾偉宏
[7] G. P. Agrawal, Nonlinear Fiber Optics (Fourth Ed.), (Academic Press, San Diego, CA, 2006).
[8] G. P. Agrawal, Fiber-optic communication System (Third Ed.), Willy Inter-Science,2002
[9] G. P. Agrawal, Nonlinear Fiber Optics (Fourth Ed.), (Academic Press, San Diego, CA, 2006).
[10] “A Study of RZ-DPSK Modulation Scheme upon Long-haul Optical Fiber Transmission”國立中山大學/光電工程研究所/96/碩士/096NSYS5124049
[11] H. Taga, S. -S. Shu, J. -Y. Wu, and W. -T. Shih, “A Theoretical Study of the Effect of the Dispersion Map Upon a Long-Haul RZ-DPSK Transmission System”, IEEE Photon. Technology Letter, vol. 19, no. 24, pp. 2060–2062, December 2007.
[12] G. Mohs, W. T. Anderson, and E. A. Golovchenko, “A new dispersion map for undersea optical communication systems,” in Proc. Optical Fiber Communication Conf. (OFC 2007), Anaheim, CA, March. 2007, Paper JThA41
[13] N. S. Bergano, “Wavelength division multiplexing in long-haul transoceanic transmission systems,” J. Lightw. Technol., vol. 23, no.12, pp. 4125–4139, Dec. 2004.
[14] H. Taga, S. -S. Shu, J. -Y. Wu, and W. -T. Shih, “A theoretical study of the effect of zero-crossing points within the dispersion map upon a long-haul RZ-DPSK system,” Optics Express, vol.16, no. 9, pp.6163–6169, April 2008
[15] H. Taga and W. -H. Chung “Impact of dispersion map design upon transmission performance of long-haul RZDPSK system using dispersion flattened fiber” Optics Express, vol. 18, no 8, pp. 8332-8337, April 2010
[16] “Theoretical Study to Investigate the Optimum Dispersion Map Design for Long-haul RZ-DPSK System Using DFF,”國立中山大學/光電工程研究所/97/碩士/鍾偉宏
[17] B. Bakhshi, M. Manna, G. Mohs, D. I. Kovsh, R. L. Lynch, M. Vaa, E. A. Golovchenko, W. W. Patterson,W. T. Anderson, P. Corbett, S. Jiang, M. M. Sanders, H. Li, G. T. Harvey, A. Lucero, and S. M. Abbott, "First dispersion-flattened transpacific undersea system: from design to Terabit/s field trial," J. Lightwave Technology, vol. 22, no. 1, pp. 233-241, January 2004
[18] H. Taga, “A theoretical investigation of the long-haul RZDPSK system performance using DFF and NZDSF”, Optics Express vol. 17, no. 8, pp. 6032-1234, April 2009.
[19] http://www.ofsoptics.com/resources/UWOceanFiber-fiber-115.pdf.
[20] B. Choi *, M. Attygalle, Y. Wen, S. D. Dods, ”Dispersion map optimisation and dispersion slope mismatch effects for 40 channel • 10 Gbit/s transmission over 3000 km using standard SMF and EDFA amplification” Optics Communications, vol. 242, Issues 4-6, pp.525–532, 8 December 2004.
[21] “A Study of RZ-DPSK Modulation Scheme upon Long-haul Optical Fiber Transmission” 國立中山大學/光電工程研究所/96/碩士/096NSYS5124049
[22 http://www.ofsoptics.com/resources/UWOceanFiber-fiber- 115.pdf
[23]“Theoretical Study to Investigate the Optimum Dispersion Map Design for Long-haul RZ-DPSK System Using DFF,”國立中山大學/光電工程研究所/97/碩士/鍾偉宏
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.119.199
論文開放下載的時間是 校外不公開

Your IP address is 3.145.119.199
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code