Responsive image
博碩士論文 etd-0627111-184422 詳細資訊
Title page for etd-0627111-184422
論文名稱
Title
鈀奈米組合電極研製及其在電化學電泳晶片之應用
Development of palladium nanoelectrode ensemble and its applications in chip-based electrochemical capillary electrophoresis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-03-24
繳交日期
Date of Submission
2011-06-27
關鍵字
Keywords
電化學偵測法、電泳、電漿蝕刻、去耦介面、組合電極
plasma etching, capillary electrophoresis, NEE, decoupler, electrochemical detection
統計
Statistics
本論文已被瀏覽 5671 次,被下載 14
The thesis/dissertation has been browsed 5671 times, has been downloaded 14 times.
中文摘要
本研究發展出一高效能電化學電泳晶片,此晶片結合鈀奈米組合電極作為電泳晶片之去耦介面,並以金奈米組合電極作為工作電極。其中,本論文提出新無電鍍鈀浴成份,使鈀金屬沉積於多孔性聚碳酸脂薄膜中,製作出鈀奈米組合電極。
由實驗結果顯示,以鈀奈米組合電極作為去耦介面時,能有效避免電極表面因高電場所產生之氫氣,亦能大幅降低分離電場所造成之雜訊電流及基線飄移影響,在800 V/cm之分離電場下所測得之背景電流約為21.0 pA。而相較於其它平面電極而言,能大幅提升偵測之訊雜比。以此設計之電泳晶片分離多巴胺與兒茶酚,偵測極限為50 nM與100 nM。
再者,藉由氧氣電漿對奈米組合電極進行乾蝕刻,能使奈米組合電極露出大量奈米柱,因而比表面積大幅上升。以鈀奈米柱組合電極作為去耦介面,由於電極表面積的增加,鈀奈米柱能更快速吸附氫氣,且能更有效地降低電泳電流。因此,在800 V/cm之分離電場下,其背景電流約為5.6 pA,小於未蝕刻之鈀奈米組合電極之情況。此外,其對多巴胺與兒茶酚的偵測極限更能下探至10 nM與50 nM,大幅提升其訊雜比及其分離效率。
因此,利用鈀奈米柱組合電極作為去耦介面,能大幅降低電泳晶片之電泳電流及氫氣生成。此外,配合金奈米組合電極為工作電極,更能提升偵測之訊雜比及降低偵測極限,創造出高偵測效能之電化學電泳晶片。
Abstract
This study demonstrates a high-performance capillary electrophoresis electrochemical (CE-EC) microchip featuring embedded the palladium nanoelectrode ensemble (Pd-NEE) as the decoupler. The Pd-NEE is fabricated utilizing a new composition of electroless plating bath for depositing palladium in the porous polycarbonate thin film. Palladium has the adsorbability and permeability to hydrogen, such that the produced Pd-NEE is able to eliminate the hydrogen formation from the high separation voltage and to reduce the background current for electrochemical detection. Moreover, this study adopts the oxygen plasma to etch the nanoelectrode ensemble to enlarge the exposed surface areas to further enhance the decoupling performance of the Pd-NRE.
Experimental results show that the developed Pd-NEE decoupler is capable of decoupling the electrophoretic current such that the hydrogen formation on the electrochemical electrodes was suppressed. Results indicate the developed Pd-NEE decoupler greatly enhance the S/N ratio for the electrochemical signal and lower the detectable concentration for the bio-sample of the dopamine and catechol. The detection limit of dopamine and catechol are 50 nM and 100 nM using the microchip with the Pd-NEE decoupler.
Furthermore, results also indicate that the palladium nanorod ensemble (Pd-NRE) decoupler produced using the oxygen plasma etching of Pd-NEE have better electrochemical detection performance in compared with the Pd-NEE decoupler. The background current of the electrochemical detection obtained with the microchip with Pd-NRE decoupler is about 5.6 pA at applied electric field of 800 V/cm electric field. In addition, combining the gold nanorod ensemble (GNRE) as the working electrode, the detection limit is lower to 10 nM and 50 nM, respectively. This study presents a high efficiency CE-EC microchip with a Pd-NRE decoupler and a GNRE working electrode which not only decreases the background current but improves the detection limit.
目次 Table of Contents
目錄
目錄 i
圖目錄 iii
表目錄 v
符號表 vi
簡寫表 vii
摘要 viii
Abstract ix
第一章 緒論 1
1-1 研究背景 1
1-2 電泳晶片簡介 1
1-2-1 電泳基本原理 1
1-2-2 電泳晶片基材與製作方式 2
1-2-3 電泳晶片偵測方式 3
1-3 電化學檢測法 5
1-3-1 電導度偵測法 5
1-3-2 電位偵測法 7
1-3-3 安培偵測法 8
1-4 電化學電極系統 11
1-5 動機與目的 13
1-6 論文架構 14
第二章 原理與理論分析 15
2-1 奈米組合電極特性與應用 15
2-1-1 奈米組合電極之發展 15
2-1-2 奈米組合電極之特性 15
2-1-3 奈米組合電極之製作 17
2-2 鈀金屬特性與應用 19
2-2-1 鈀金屬特性 19
2-2-2 鈀於電化學電泳晶片之應用 20
第三章 實驗架構與方法 22
3-1 奈米組合電極製作 22
3-2 電泳晶片設計與製作 28
3-2-1 管道晶片製作 28
3-2-2 平面電極晶片製作 29
3-2-3 電泳晶片整合 30
3-3 溶液配製與實驗流程 31
3-3-1 溶液配製 31
3-3-2 實驗流程 32
第四章 結果與討論 36
4-1 鈀奈米組合電極特性 36
4-2 鈀奈米組合電極氫氣吸附效能評估 38
4-3 鈀奈米組合電極的蝕刻及其效能評估 39
4-4 鈀奈米組合電極應用於去耦介面 43
4-5 於高電場下分離多巴胺與兒茶酚效能比較 47
第五章 結論與未來展望 53
參考文獻 55
自述 63
參考文獻 References
[1] F. Kohlrausch, "Uber Concentrations-Verschiebungen durch Elektrolyse im Inneren von Losungen und Losungsgemischen," Ann. Phys. Chem., vol. 62, pp. 209-239, 1897.
[2] A. Tiselius, "A new apparatus for electrophoretic analysis of colloidal mixtures," Transactions of the Faraday Society, vol. 33, pp. 524-531, 1937.
[3] R. Virtanen, Zone electrophoresis in a narrow-bore employing potentiometric detection: Helsinki Univ. of Technology, 1974.
[4] J. W. Jorgenson and K. D. Lukacs, "Zone Electrophoresis in Open-Tubular Glass-Capillaries," Analytical Chemistry, vol. 53, pp. 1298-1302, 1981.
[5] J. W. Jorgenson and K. D. Lukacs, "Capillary Zone Electrophoresis," Science, vol. 222, pp. 266-272, 1983.
[6] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized Total Chemical-Analysis Systems - a Novel Concept for Chemical Sensing," Sensors and Actuators B-Chemical, vol. 1, pp. 244-248, 1990.
[7] M. Castano-Alvarez, M. T. Fernandez-Abedul, and A. Costa-Garcia, "Amperometric PMMA-microchip with integrated gold working electrode for enzyme assays," Analytical and Bioanalytical Chemistry, vol. 382, pp. 303-310, 2005.
[8] X. Yao, H. Wu, J. Wang, S. Qu, and G. Chen, "Carbon nanotube/Poly (methyl methacrylate)(CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis," Chemistry–A European Journal, vol. 13, pp. 846-853, 2007.
[9] R. S. Martin, A. J. Gawron, S. M. Lunte, and C. S. Henry, "Dual-electrode electrochemical detection for poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips," Analytical Chemistry, vol. 72, pp. 3196-3202, 2000.
[10] A. J. Gawron, R. S. Martin, and S. M. Lunte, "Fabrication and evaluation of a carbon-based dual-electrode detector for poly(dimethylsiloxane) electrophoresis chips," Electrophoresis, vol. 22, pp. 242-248, 2001.
[11] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane)," Electrophoresis, vol. 21, pp. 27-40, 2000.
[12] Y. R. Wang, H. W. Chen, Q. H. He, and S. A. Soper, "A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection," Electrophoresis, vol. 29, pp. 1881-1888, 2008.
[13] L. Martynova, L. E. Locascio, M. Gaitan, G. W. Kramer, R. G. Christensen, and W. A. MacCrehan, "Fabrication of plastic microfluid channels by imprinting methods," Analytical Chemistry, vol. 69, pp. 4783-4789, 1997.
[14] R. M. McCormick, R. J. Nelson, M. G. AlonsoAmigo, J. Benvegnu, and H. H. Hooper, "Microchannel electrophoretic separations of DNA in injection-molded plastic substrates," Analytical Chemistry, vol. 69, pp. 2626-2630, 1997.
[15] M. A. Roberts, J. S. Rossier, P. Bercier, and H. Girault, "UV laser machined polymer substrates for the development of microdiagnostic systems," Analytical Chemistry, vol. 69, pp. 2035-2042, 1997.
[16] C. H. Lin, C. H. Chao, and C. W. Lan, "Low azeotropic solvent for bonding of PMMA microfluidic devices," Sensors and Actuators B-Chemical, vol. 121, pp. 698-705, 2007.
[17] V. Dolnik, S. R. Liu, and S. Jovanovich, "Capillary electrophoresis on microchip," Electrophoresis, vol. 21, pp. 41-54, 2000.
[18] P. A. Limbach and Z. J. Meng, "Integrating micromachined devices with modern mass spectrometry," Analyst, vol. 127, pp. 693-700, 2002.
[19] J. H. Qin, Y. S. Fung, D. R. Zhu, and B. C. Lin, "Native fluorescence detection of flavin denvatives by microchip capillary electrophoresis with laser-induced fluorescence intensified charge-coupled device detection," Journal of Chromatography A, vol. 1027, pp. 223-229, 2004.
[20] J. A. Olivares, N. T. Nguyen, C. R. Yonker, and R. D. Smith, "Online Mass-Spectrometric Detection for Capillary Zone Electrophoresis," Analytical Chemistry, vol. 59, pp. 1230-1232, 1987.
[21] R. D. Smith, J. A. Loo, C. G. Edmonds, C. J. Barinaga, and H. R. Udseth, "Sensitivity Considerations for Large Molecule Detection by Capillary Electrophoresis Electrospray Ionization Mass-Spectrometry," Journal of Chromatography, vol. 516, pp. 157-165, 1990.
[22] M. A. Moseley, L. J. Deterding, K. B. Tomer, and J. W. Jorgenson, "Coupling of Capillary Zone Electrophoresis and Capillary Liquid-Chromatography with Coaxial Continuous-Flow Fast Atom Bombardment Tandem Sector Mass-Spectrometry," Journal of Chromatography, vol. 480, pp. 197-209, 1989.
[23] L. J. Deterding, C. E. Parker, J. R. Perkins, M. A. Moseley, J. W. Jorgenson, and K. B. Tomer, "Nanoscale Separations - Capillary Liquid-Chromatography Mass-Spectrometry and Capillary Zone Electrophoresis Mass-Spectrometry for the Determination of Peptides and Proteins," Journal of Chromatography, vol. 554, pp. 329-338, 1991.
[24] M. A. Moseley, L. J. Deterding, K. B. Tomer, and J. W. Jorgenson, "Determination of Bioactive Peptides Using Capillary Zone Electrophoresis Mass-Spectrometry," Analytical Chemistry, vol. 63, pp. 109-114, 1991.
[25] J. Wang, "Electrochemical detection for capillary electrophoresis microchips: A review," Electroanalysis, vol. 17, pp. 1133-1140, 2005.
[26] J. Wang, G. Chen, and A. Muck, "Movable contact less-conductivity detector for microchip capillary electrophoresis," Analytical Chemistry, vol. 75, pp. 4475-4479, 2003.
[27] P. Schnierle, T. Kappes, and P. C. Hauser, "Capillary electrophoretic determination of different classes of organic ions by potentiometric detection with coated-wire ion-selective electrodes," Analytical Chemistry, vol. 70, pp. 3585-3589, 1998.
[28] T. Kappes, P. Schnierle, and P. C. Hauser, "Evaluation of the potentiometric detection of acetylcholine and other neurotransmitters in capillary electrophoresis," Electrophoresis, vol. 21, pp. 1390-1394, 2000.
[29] J. Wang, B. M. Tian, and E. Sahlin, "Integrated electrophoresis chips/amperometric detection with sputtered gold working electrodes," Analytical Chemistry, vol. 71, pp. 3901-3904, 1999.
[30] F. E. P. Mikkers, F. M. Everaerts, and T. P. E. M. Verheggen, "High-Performance Zone Electrophoresis," Journal of Chromatography, vol. 169, pp. 11-20, 1979.
[31] J. Tanyanyiwa, S. Leuthardt, and P. C. Hauser, "Conductimetric and potentiometric detection in conventional and microchip capillary electrophoresis," Electrophoresis, vol. 23, pp. 3659-3666, 2002.
[32] R. M. Guijt, E. Baltussen, G. van der Steen, R. B. M. Schasfoort, S. Schlautmann, H. A. H. Billiet, J. Frank, G. W. K. van Dedem, and A. van den Berg, "New approaches for fabrication of microfluidic capillary electrophoresis devices with on-chip conductivity detection," Electrophoresis, vol. 22, pp. 235-241, 2001.
[33] M. Galloway, W. Stryjewski, A. Henry, S. M. Ford, S. Llopis, R. L. McCarley, and S. A. Soper, "Contact conductivity detection in poly(methyl methacylate)-based microfluidic devices for analysis of mono- and polyanionic molecules," Analytical Chemistry, vol. 74, pp. 2407-2415, 2002.
[34] M. Pumera, J. Wang, F. Opekar, I. Jelinek, J. Feldman, H. Lowe, and S. Hardt, "Contactless conductivity detector for microchip capillary electrophoresis," Analytical Chemistry, vol. 74, pp. 1968-1971, 2002.
[35] J. Wang, G. Chen, A. Muck, and G. E. Collins, "Electrophoretic microchip with dual-opposite injection for simultaneous measurements of anions and cations," Electrophoresis, vol. 24, pp. 3728-3734, 2003.
[36] A. Nann and W. Simon, "On-Column Detection in Capillary Zone Electrophoresis with Ion-Selective Microelectrodes in Conical Capillary Apertures," Journal of Chromatography, vol. 633, pp. 207-211, 1993.
[37] R. W. Cattrall and H. Freiser, "Coated Wire Ion Selective Electrodes," Analytical Chemistry, vol. 43, pp. 1905-1906, 1971.
[38] K. Suzuki, H. Aruga, and T. Shirai, "Determination of Mono-Valent Cations by Ion Chromatography with Ion-Selective Electrode Detection," Analytical Chemistry, vol. 55, pp. 2011-2013, 1983.
[39] T. Kappes, B. Galliker, M. A. Schwarz, and P. C. Hauser, "Portable capillary electrophoresis instrument with amperometric, potentiometric and conductometric detection," Trac-Trends in Analytical Chemistry, vol. 20, pp. 133-139, 2001.
[40] D. A. Skoog, D. M. West, J. F. Holler, and S. R. Crouch, "Fundamentals of Analytical Chemistry, Thomson, Brooks," 8th ed. California: Thomson-Brooks/Cole, 2004, pp. 637-640.
[41] R. A. Wallingford and A. G. Ewing, "Capillary Zone Electrophoresis with Electrochemical Detection," Analytical Chemistry, vol. 59, pp. 1762-1766, 1987.
[42] W. R. Vandaveer, S. A. Pasas-Farmer, D. J. Fischer, C. N. Frankenfeld, and S. M. Lunte, "Recent developments in electrochemical detection for microchip capillary electrophoresis," Electrophoresis, vol. 25, pp. 3528-3549, 2004.
[43] X. H. Huang, R. N. Zare, S. Sloss, and A. G. Ewing, "End-Column Detection for Capillary Zone Electrophoresis," Analytical Chemistry, vol. 63, pp. 189-192, 1991.
[44] P. Ertl, C. A. Emrich, P. Singhal, and R. A. Mathies, "Capillary electrophoresis chips with a sheath-flow supported electrochemical detection system," Analytical Chemistry, vol. 76, pp. 3749-3755, 2004.
[45] R. S. Martin, K. L. Ratzlaff, B. H. Huynh, and S. M. Lunte, "In-channel electrochemical detection for microchip capillary electrophoresis using an electrically isolated potentiostat," Analytical Chemistry, vol. 74, pp. 1136-1143, 2002.
[46] D. C. Chen, F. L. Hsu, D. Z. Zhan, and C. H. Chen, "Palladium film decoupler for amperometric detection in electrophoresis chips," Analytical Chemistry, vol. 73, pp. 758-762, 2001.
[47] J. S. Rossier, R. Ferrigno, and H. H. Girault, "Electrophoresis with electrochemical detection in a polymer microdevice," Journal of Electroanalytical Chemistry, vol. 492, pp. 15-22, 2000.
[48] W. T. Kok and Y. Sahin, "Solid-State Field Decoupler for Off-Column Detection in Capillary Electrophoresis," Analytical Chemistry, vol. 65, pp. 2497-2501, 1993.
[49] X. J. Huang and W. T. Kok, "Determination of Thiols by Capillary Electrophoresis with Electrochemical Detection Using a Palladium Field-Decoupler and Chemically-Modified Electrodes," Journal of Chromatography A, vol. 716, pp. 347-353, 1995.
[50] J. Wang, M. P. Chatrathi, A. Mulchandani, and W. Chen, "Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents," Analytical Chemistry, vol. 73, pp. 1804-1808, 2001.
[51] J. Wang, M. P. Chatrathi, and B. M. Tian, "Microseparation chips for performing multienzymatic dehydrogenase/oxidase assays: Simultaneous electrochemical measurement of ethanol and glucose," Analytical Chemistry, vol. 73, pp. 1296-1300, 2001.
[52] R. S. Martin, A. J. Gawron, B. A. Fogarty, F. B. Regan, E. Dempsey, and S. M. Lunte, "Carbon paste-based electrochemical detectors for microchip capillary electrophoresis/electrochemistry," Analyst, vol. 126, pp. 277-280, 2001.
[53] P. F. Gavin and A. G. Ewing, "Continuous separations with microfabricated electrophoresis-electrochemical array detection," Journal of the American Chemical Society, vol. 118, pp. 8932-8936, 1996.
[54] A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, "Capillary electrophoresis chips with integrated electrochemical detection," Analytical Chemistry, vol. 70, pp. 684-688, 1998.
[55] R. P. Baldwin, "Electrochemical determination of carbohydrates: Enzyme electrodes and amperometric detection in liquid chromatography and capillary electrophoresis," Journal of Pharmaceutical and Biomedical Analysis, vol. 19, pp. 69-81, 1999.
[56] J. R. Heath, S. C. Obrien, Q. Zhang, Y. Liu, R. F. Curl, H. W. Kroto, F. K. Tittel, and R. E. Smalley, "Lanthanum Complexes of Spheroidal Carbon Shells," Journal of the American Chemical Society, vol. 107, pp. 7779-7780, 1985.
[57] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, pp. 56-58, 1991.
[58] R. M. Penner and C. R. Martin, "Preparation and electrochemical characterization of ultramicroelectrode ensembles," Analytical Chemistry, vol. 59, pp. 2625-2630, 1987.
[59] V. P. Menon and C. R. Martin, "Fabrication and Evaluation of Nanoelectrode Ensembles," Analytical Chemistry, vol. 67, pp. 1920-1928, 1995.
[60] W. L. Cheng, S. J. Dong, and E. K. Wang, "Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction," Analytical Chemistry, vol. 74, pp. 3599-3604, 2002.
[61] J. L. Conyers and H. S. White, "Electrochemical characterization of electrodes with submicrometer dimensions," Analytical Chemistry, vol. 72, pp. 4441-4446, 2000.
[62] E. Jeoung, T. H. Galow, J. Schotter, M. Bal, A. Ursache, M. T. Tuominen, C. M. Stafford, T. P. Russell, and V. M. Rotello, "Fabrication and characterization of nanoelectrode arrays formed via block copolymer self-assembly," Langmuir, vol. 17, pp. 6396-6398, 2001.
[63] P. Ugo, L. M. Moretto, S. Bellomi, V. P. Menon, and C. R. Martin, "Ion-exchange voltammetry at polymer film-coated nanoelectrode ensembles," Analytical Chemistry, vol. 68, pp. 4160-4165, 1996.
[64] L. Sun and R. M. Crooks, "Fabrication and characterization of single pores for modeling mass transport across porous membranes," Langmuir, vol. 15, pp. 738-741, 1999.
[65] W. S. Baker and R. M. Crooks, "Independent geometrical and electrochemical characterization of arrays of nanometer-scale electrodes," Journal of Physical Chemistry B, vol. 102, pp. 10041-10046, 1998.
[66] C. R. Martin, "Membrane-based synthesis of nanomaterials," Chemistry of Materials, vol. 8, pp. 1739-1746, 1996.
[67] C. R. Martin, "Nanomaterials - a Membrane-Based Synthetic Approach," Science, vol. 266, pp. 1961-1966, 1994.
[68] A. Darling, "The diffusion of hydrogen through palladium," Platinum Met. Rev, vol. 2, p. 16!V22, 1958.
[69] T. Graham, "On the Absorption and Dialytic Separation of Gases by Colloid Septa," Philosophical Transactions of the Royal Society of London, vol. 156, pp. 399-439, 1866.
[70] F. A. Lewis, "The palladium hydrogen system," ACADEMIC PRESS, INC., NEW YORK, N. Y. 1967, 178 P, 1967.
[71] F. Lewis, "Hydrogen in palladium and palladium alloys," International Journal of Hydrogen Energy, vol. 21, pp. 461-464, 1996.
[72] C. C. Wu, R. G. Wu, J. G. Huang, Y. C. Lin, and H. C. Chang, "Three-electrode electrochemical detector and platinum film decoupler integrated with a capillary electrophoresis microchip for amperometric detection," Analytical Chemistry, vol. 75, pp. 947-952, 2003.
[73] C. C. J. Lai, C. H. Chen, and F. H. Ko, "In-channel dual-electrode amperometric detection in electrophoretic chips with a palladium film decoupler," Journal of Chromatography A, vol. 1023, pp. 143-150, 2004.
[74] A. L. Bowen and R. S. Martin, "Integration of serpentine channels for microchip electrophoresis with a palladium decoupler and electrochemical detection," Electrophoresis, vol. 30, pp. 3347-3354, 2009.
[75] N. A. Lacher, S. M. Lunte, and R. S. Martin, "Development of a microfabricated palladium decoupler/electrochemical detector for microchip capillary electrophoresis using a hybrid glass/poly(dimethylsiloxane) device," Analytical Chemistry, vol. 76, pp. 2482-2491, 2004.
[76] A. A. Dawoud, T. Kawaguchi, and R. Jankowiak, "Integrated microfluidic device with an electroplated palladium decoupler for more sensitive amperometric detection of the 8-hydroxy-deoxyguanosine (8-OH-dG) DNA adduct," Analytical and Bioanalytical Chemistry, vol. 388, pp. 245-252, 2007.
[77] L. C. Mecker and R. S. Martin, "Use of micromolded carbon dual electrodes with a palladium decoupler for amperometric detection in microchip electrophoresis," Electrophoresis, vol. 27, pp. 5032-5042, 2006.
[78] D. M. Osbourn and C. E. Lunte, "On-column electrochemical detection for microchip capillary electrophoresis," Analytical Chemistry, vol. 75, pp. 2710-2714, 2003.
[79] I. Ohno, "Electrochemistry of Electroless Plating," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 146, pp. 33-49, 1991.
[80] P. N. Bartlett, B. Gollas, S. Guerin, and J. Marwan, "The preparation and characterisation of H-1-e palladium films with a regular hexagonal nanostructure formed by electrochemical deposition from lyotropic liquid crystalline phases," Physical Chemistry Chemical Physics, vol. 4, pp. 3835-3842, 2002.
[81] D. A. J. Rand and R. Woods, "A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry," Journal of Electroanalytical Chemistry, vol. 35, pp. 209-218, 1972.
[82] C. M. Chen, G. L. Chang, and C. H. Lin, "Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes," Journal of Chromatography A, vol. 1194, pp. 231-236, 2008.
[83] D. L. Mckinley, "Metal alloy for hydrogen separation and purification," ed: US Patent 3,350,845, 1967.
[84] D. L. Mckinley, "Method for hydrogen separation and purification," ed: US Patents, 1969.
[85] B. D. Morreale, M. V. Ciocco, B. H. Howard, R. P. Killmeyer, A. V. Cugini, and R. M. Enick, "Effect of hydrogen-sulfide on the hydrogen permeance of palladium-copper alloys at elevated temperatures," Journal of Membrane Science, vol. 241, pp. 219-224, 2004.
[86] S.-E. Nam and K.-H. Lee, "Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier," Journal of Membrane Science, vol. 192, pp. 177-185, 2001.
[87] M. Łukaszewski, T. Kędra, and A. Czerwiński, "Influence of hydrogen electrosorption on surface oxidation of Pd and Pd-noble metal alloys," Electrochemistry Communications, vol. 11, pp. 978-982, 2009.
[88] S. Uemiya, T. Matsuda, and E. Kikuchi, "Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics," Journal of Membrane Science, vol. 56, pp. 315-325, 1991.
[89] E. Kikuchi and S. Uemiya, "Preparation of supported thin palladium-silver alloy membranes and their characteristics for hydrogen separation," Gas Separation & Purification, vol. 5, pp. 261-266, 1991.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.183.137
論文開放下載的時間是 校外不公開

Your IP address is 3.145.183.137
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code