Responsive image
博碩士論文 etd-0627112-160911 詳細資訊
Title page for etd-0627112-160911
論文名稱
Title
凸輪連桿式沖床之合成與分析
Synthesis and Analysis of Cam-Link Mechanisms for Presses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-05-19
繳交日期
Date of Submission
2012-06-27
關鍵字
Keywords
六連桿肘節機構、機械利益、塑性成形、精確點、凸輪連桿機構
Mechanical advantage, Plastic forming, Cam-link mechanism, Precision points, Six-bar toggle mechanism
統計
Statistics
本論文已被瀏覽 5731 次,被下載 3138
The thesis/dissertation has been browsed 5731 times, has been downloaded 3138 times.
中文摘要
六連桿肘節機構因構型簡單,同時於肘節位置時具有極大的機械利益,故廣泛被應用在塑性成形加工機上。本研究針對傳統六連桿肘節機構進行分析,應用機構設計法合成兩種凸輪連桿機構,為凸輪曲柄滑塊連桿與凸輪雙滑塊連桿機構,透過運動與動力分析,比較其構型之差異。
凸輪連桿機構較連桿機構具有可滿足多精確點之設計優勢,因此,應用上可以針對塑性加工的速度與行程進行合成。由於肘節機構之運動特性,本論文使用數種不同的邊界條件合成沖頭運動曲線,並分析其特性,本論文選擇兩種曲線作為設計凸輪連桿機構。
Abstract
Based on the traditional six-bar toggle mechanisms, this study is focused on the design of two types of cam-link mechanisms. Six-bar toggle mechanisms are simple, and they have an extreme mechanical advantage in toggle position so that they are widely used in plastic forming machines. Cam-crank-slider and cam-double-slider linkage are the two types mechanisms that we concerned. And we find the difference between these mechanisms for kinematic and dynamic performance.
The benefit of cam-link mechanisms compares to linkage mechanisms is more precision points. We can synthesize the curve profile with the demand for forming acceleration or stroke. Because we need interpret the kinematic characteristic of toggle mechanisms by using several boundaries condition of different curves. This study selects two kinds from foregoing curve for the model.
目次 Table of Contents
審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖次 ix
表次 xiv
第一章 緒論 1
1-1 機械塑性加工成形簡介與需求 1
1-2 沖床機構之種類與應用 3
1-2-1 機械式沖床 3
1-2-2 伺服控制 4
1-3 機構運動與動力特性 7
1-3-1 動態不平衡 7
1-3-2 凸輪連桿式機構 8
1-4 文獻回顧 8
1-5 研究動機與目的 10
1-6 論文架構 10
第二章 構型分析與合成 11
2-1 肘節機構之簡介 11
2-2 創造性機構設計 12
2-2-1 六連桿單自由度機構分析 13
2-2-2 凸輪連桿式肘節機構構型合成 15
第三章 運動分析 17
3-1 背景說明 17
3-2 六連桿肘節機構運動分析 17
3-2-1 四連桿機構運動分析 18
3-2-2 曲柄滑塊機構運動分析 23
3-2-3 雙滑塊機構運動分析 27
3-2-4 耦點運動分析 30
3-3 凸輪連桿式肘節機構幾何分析 32
第四章 動力分析 40
4-1 背景說明 40
4-2 六連桿肘節機構動力分析 40
4-3 凸輪連桿式肘節機構動力分析 47
4-3-1 凸輪曲柄滑塊連桿式肘節構型 47
4-3-2 凸輪雙滑塊連桿式肘節構型 51
4-3-3 凸輪驅動負荷 55
第五章 運動曲線之合成與分析 58
5-1 數值曲線之合成 58
5-2 凸輪運動曲線 58
5-2-1 曲線選用 58
5-2-2 肘節機構運動特性 62
第六章 實例分析 69
6-1 整體分析 69
6-1-1 六連桿肘節機構 69
6-1-2 凸輪曲柄滑塊連桿機構 75
6-1-3 凸輪雙滑塊連桿機構 89
6-1-4 性能比較 100
6-2 凸輪連桿機構參數探討 100
第七章 結論 107
參考文獻 109
參考文獻 References
[1]許源泉,塑性加工學,全華科技圖書,西元2004年。
[2]Synchropress® 4000 kN, http://synchropress.com.
[3]J.A.M. SEP 1000N, http://www.jam-net.co.jp.
[4]AIDA NS2-D, http://aidapress.com.
[5]AMADA SDE-4515, http://www.minster.com.
[6]“Introduction of High-speed Linear Servo-press-line (HLS) Product,” Komatsu technical report, http://www.komatsu.com.
[7]J. Jeswiet, M. Geiger, U Engel, M. Kleiner, M. Schikorra, J. Duflou, R. Neugebauer, P. Bariani, and S. Bruschi, “Metal forming progress since 2000,” CIRP Journal of Manufacturing Science and Technology, Vol. 1, No. 1, pp. 2-17, 2008.
[8]R. Neugebauer, K. D. Bouzakis, B. Denkena, F. Klocke, A. Sterzing, A. E. Tekkaya, and R. Wertheim, “Velocity Effects in Metal Forming and Machining Processes,” CIRP Annals - Manufacturing Technology, Vol. 60, No. 2, pp. 627-650, 2011.
[9]S. Yossifon, D. Messerly, E. Kropp, R. Shivpuri, and T. Altan, “A Servo Motor Driven Multi-Action Press for Sheet Metal Forming,” International Journal of Machine Tools and Manufacture, Vol. 31, No. 3, pp. 345-359, 1991.
[10]W. M. Hwang, Y. C. Hwang, and S. T. Chiou, “A Drag-Link Drive of Mechanical Presses for Precision Drawing,” International Journal of Machine Tools and Manufacture, Vol. 35, No. 10, pp.1425-1433, 1995.
[11]S. T. Chiou, G. J. Bai, and W. K. Chang, “Optimum Balancing Designs of the Drag-Link Drive of Mechanical Presses for Precision Cutting,” International Journal of Machine Tools and Manufacture, Vol. 38, No. 3, pp. 131-141, 1998.
[12]P. L. Tso and K. C. Liang, “A nine-bar linkage for mechanical forming presses,” International Journal of Machine Tools and Manufacture, Vol. 42 , No.1, pp. 139-145, 2002.
[13]R. Du and W. Z. Guo, “The Design of a New Metal Forming Press With Controllable Mechanism,” Journal of Mechanical Design, Vol. 125, No. 3, pp. 582-592, 2003.
[14]R. C. Soong, “A new design method for single DOF mechanical presses with variable speeds and length-adjustable driving links,” Mechanism and Machine Theory, Vol.45, No.3 , pp.496-510, 2010.
[15]H. Li, L. Fu, and Y. Zhang, “Optimum Design of a Hybrid-Driven Mechanical Press Based on Inverse Kinematics,” Journal of Mechanical Engineering, Vol. 56, No. 5, pp. 301-306, 2010.
[16]P. L. Tso, “Optimal Design of a Hybrid-Driven Servo Press and Experimental Verification,” Journal of Mechanical Design, Vol. 132, No. 3, Article Number: 034503, 2010.
[17]L. L. Howell, “The Effects of a Compliant Workpiece on the Input/Output Characteristics of Rigid-Link Toggle Mechanisms,” Mechanism and Machine Theory, Vol. 30, No. 6, pp. 801-810, 1995.
[18]A. Kirecci and L. C. Dulger, “A study on a hybrid actuator,” Mechanism and Machine Theory, Vol. 35, No. 8, pp. 1141-1149, 2000.
[19]G. Shukla and A. K. Mallik, “Detection of a crank in six-link planar mechanisms,” Mechanism and Machine Theory, Vol. 35, No. 7, pp. 911-926, 2000.
[20]A. K. Dhingra, A. N Almadi, and D. Kohli, “A Closed-Form Approach to Coupler-Curves of Multi-Loop Mechanisms,” Journal of Mechanical Design, Vol. 122, No. 4, pp. 464-471, 2000.
[21]C. C. Lin and W. T. Chang, “The Force Transmissivity Index of Planar Linkage Mechanisms,” Mechanism and Machine Theory, Vol. 37, No. 12, pp. 1465-1485, 2002.
[22]W. J. Zhang and Q, Li, “A Closed-Form Solution to the Crank Position Corresponding to the Maximum Velocity of the Slider in a Centric Slider-Crank Mechanism,” Journal of Mechanical Design, Vol. 128, No. 3, pp. 654-656, 2006.
[23]K. H. Shirazi, “Symmetrical Coupler Curve and Singular Point Classification in Planar and Spherical Swinging-Block Linkages,” Journal of Mechanical Design, Vol. 128, No. 2, pp. 436-443, 2006.
[24]A. C. Rao and A. Srinath, “Planar Linkages: Structural Influence on Mechanical Advantage and Function Generation,” Mechanism and Machine Theory, Vol. 42, No. 4, pp. 472-481, 2007.
[25]H. Tari and H. J. Su, “Complete Solution to the Eight-Point Path Generation of Slider-Crank Four-Bar Linkages,” Journal of Mechanical Design, Vol. 132, No. 8, Article Number: 081003, 2010.
[26]C. O. Huey and M. W. Dixon, “The Cam-Link Mechanism for Structural Error-Free Path and Function Generation,” Mechanism and Machine Theory, Vol. 9, No. 3-4, pp. 367-384, 1974.
[27]J. P. Sadler and Z. Yang, “Optimal Design of Cam-Linkage Mechanisms for Dynamics-Force Characteristics,” Mechanism and Machine Theory, Vol. 25, No.1, pp. 41-57, 1990.
[28]D. Mundo, J. Y. Liu, and H. S. Yan, “Optimal Synthesis of Cam-Linkage Mechanisms for Precise Path Generation,”Journal of Mechanical Design, Vol. 128, No. 6, pp.1253-1260, 2006.
[29]D. Mundo, G. A. Danieli, and H. S. Yan, “Kinematic Optimization of Mechanical Presses by Optimal Synthesis of Cam-Integrated Linkages,”Transactions of the Canadian Society for Mechanical Engineering, Vol. 30, No. 4, pp. 519-532, 2006.
[30]L. I. Wu, W. T. Chang, and C. H. Liu, “The Design of Varying-Velocity Translating Cam Mechanisms,” Mechanism and Machine Theory, Vol. 42, No. 3, pp 352-364,2007.
[31]U. S. Chavan and S. V. Joshi, “Synthesis and Analysis of Coupler Curves with Combined Planar Cam Follower Mechanisms,” International Journal of Engineering, Science and Technology, Vol. 2, No. 6, pp. 231-243, 2010.
[32]Z. Ge, Y. Li, K. Zhang, and F. Yang, “On the Hybrid Cam-Linkage Mechanism Realizing Variable Trajectory,” Computer, Mechatronics, Control and Electionic Engineering, 2010 International Conference, Vol.2, pp.273-276.
[33]H. S. Yan, M. C.Tsai, and M. H. Msu, “An experimental study of the effects of cam speeds on cam-follower systems,” Mechanism and Machine Theory, Vol. 31, No. 4, pp 397-412,1996.
[34]H. S. Yan and W. J. Tsai, “Motion adaptation of cam-follower systems by varying input speeds,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 222 no. 3, pp. 459-472, 2008.
[35]H. S. Yan and C. C. Yeh, “Integrated Kinematic and Dynamic Designs for Variable-Speed Plate Cam Mechanisms,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 225 No. 1, pp. 194-203, 2011.
[36]W. H. Hsieh and C. H. Tsai, “On a Novel Press System with Six Links for Precision Deep Drawing,” Mechanism and Machine Theory, Vol. 46, No. 2, pp. 239-252, 2011.
[37]R. Sinatra, “Effect of Dynamic Balancing on Four-Bar Linkage Vibrations,” Mechanism and Machine Theory, Vol. 32, No. 6, pp. 715-728, 1997.
[38]V. H. Arakelian and M. R. Smith, “Complete Shaking Force and Shaking Moment Balancing of Linkages,” Mechanism and Machine Theory, Vol. 34, No. 8, pp. 1141-1153, 1999.
[39]V. H. Arakelian and M. R. Smith, “Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical Review With New Examples,” Journal of Mechanical Design, Vol. 127, No. 2, pp. 334-339, 2005.
[40]B. Moore, J. Schicho, and C. M. Gosselin, “Determination of the Completeset of Shaking Force and Shaking Moment Balanced Planar Four-Bar Linkages,” Mechanism and Machine Theory, Vol. 44, No. 7, pp. 1338-1347, 2009.
[41]V. V. D. Wijk and J. L. Herder, “Synthesis of Dynamically Balanced Mechanisms by Using Counter-Rotary Countermass Balanced Double Pendula,” Journal of Mechanical Design, Vol. 131, No. 11, Article Number: 111003, 2009.
[42]P. Nehemiah, B. S. K. S. S. Rao and K. Ramji, “Shaking Force and Shaking Moment Balancing of Planar Mechanisms with High Degree of Complexity,” Jordan Journal of Mechanical and Industrial Engineering, Vol. 6, No. 1, pp. 17-24, 2012.
[43]A. G. Erdman, G. N. Sandor and S. Kota, Mechanism Design: Analysis and Synthesis, 4th ed. Prentice Hall, 2001.
[44]G. H. Martin, Kinematics and Dynamics of Machines, 2nd ed. McGraw-Hill, 1982.
[45]許正和,創造性機構設計學,高立圖書,西元2006年。
[46]C. E. Wilson and J. P Sadler, Kinematics and Dynamics of Machinery, 3rd ed. Prentice-Hall, 2003.
[47]H. A. Rothbart, Cams: Design, Dynamics and Accuracy, John Wiley & Sons Inc, 1956.
[48]D. M. Tsay and B. J. Lin, “Profile Determination of Planar and Spatial Cams with Cylindrical Roller-Followers,”IMechE Journal of Mechanical Engineering Science, Vol. 210, No. 6, pp. 565-574, 1996.
[49]F. Y. Chen, Mechanics and Design of Cam Mechanisms, Pergamon Pr, 1982.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code