Responsive image
博碩士論文 etd-0627112-162333 詳細資訊
Title page for etd-0627112-162333
論文名稱
Title
管道中排放粒狀物之控制及特性分析
Particulate Emission Control and Characteristic Identification
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-21
繳交日期
Date of Submission
2012-06-27
關鍵字
Keywords
紙錢、空氣中粒狀物質、粒狀物控制、表觀特性、工業來源
Airborne particulate matter, Particulate emission Control, Joss Paper, Surface characteristics, Industrial sources
統計
Statistics
本論文已被瀏覽 5651 次,被下載 1018
The thesis/dissertation has been browsed 5651 times, has been downloaded 1018 times.
中文摘要
在台灣,燃燒紙錢是一重要民俗,伴隨紙錢燃燒會產生大量空氣中粒狀物質及焦味,除造成陳情外,並會影響民眾健康,勢需積極進行燃燒減量及粒狀物控制。此外,大氣中粒狀物質是主要空氣污染物之一,其主要來源為工廠排放、汽機車輛排放、營建工程、露天燃燒、車行或因風力所形成之揚塵、以及光化學反應所產生之衍生氣膠等來源。環境中粒狀物質來源甚多,如何快速地判定微粒種類及來源,以供政策擬訂及排放管制,為空氣品質管理之重要議題。
本論文探討內容分為兩部分。第一部分是紙錢燃燒排氣中粒狀污染物之去除,以濾袋集塵(Bag House, BH)及濕式洗滌器(Wet Scrubber, WS)試驗其去除該排氣粒狀污染物之性能並作比較。設置每小時可燃燒40 公斤紙錢之焚化速率的金爐,紙錢燃燒排氣經抽風機抽引後,混合部分新鮮空氣,其溫度為300-400 ℃,該混合氣體再經導引管引進洗滌塔作除塵試驗。另將該混合氣體再經鰭管式氣冷器冷卻至約120 ℃後,再以BH作除塵試驗。
BH試驗結果顯示:在外管流至內管過濾方式,內含外徑0.13 m、長度1.6 m之濾袋23只,處理風量30 m3/min,過濾速度2.0 m/min之操作條件下,BH可將其入口PM由76.6 ± 32.7 mg/Nm3 (平均值 ± 標準偏差)去除至出口0.55 ± 1.28 mg/Nm3,平均去除效率大於99.3 %。
WS試驗結果顯示:(1)在焚化速率16 kg/hr、抽氣量QG = 13.1、26.3 m3/min (@35 ℃)時,排氣粒狀物(PM)濃度分別為93-157 (平均126)及127-182 (平均157) mg/m3,低抽氣量之PM濃度較低。PM去除率與循環洗滌水流量QL成正比,在QL = 60 L/min (洗滌截面液體強度4.0 L/m2.s)時,PM去除率可達70% ;(2)燃燒1 kg紙錢之循環水消耗量可設定為1.2-2.4公升,每1,000 Am3抽氣量之循環水消耗量為24-34公升;(3)欲達70% PM去除率,洗滌器適當設計參數為:(a)液氣比(QL/QG) 3-6 L液體/(m3氣體@30 ℃);(b)氣體通過洗滌段之空塔流速(UG) 0.6-1.2 m/s;(c)洗滌液通過洗滌段之空塔流速(UL) 0.004 m/s;(d)氣液接觸段長度約0.70 m。
X光粉末繞射儀 (X-ray Diffraction, XRD)分析結果顯示,紙錢燃燒底灰之O、Na、Al、Si重量百分比分別為49.9、11.8、23.8、15.1%;飛灰C、O重量百分比為73.2%、26.8%,顯示有多量未燃燒碳留存。
紙錢燃燒排氣粒狀物控制試驗探討結果顯示,濾袋集塵及濕式洗滌器均適用為排氣中粒狀污染物之去除設施,濾袋集塵器較濕式洗滌器需較大空間及費用。
第二部分之研究目的為藉採取高污染工業製程中,經由各管道所排放之粒狀污染物,分析其表觀特性,藉以探討粒狀污染物之工業來源。本研究採集一貫作業煉鋼廠的四個主要製程為煉焦爐、燒結爐、高爐及轉爐;電弧爐、都市廢棄物焚化爐、發電廠之燃油及燃煤鍋爐等作業管道排放之粒狀物樣品,以X光能量分散儀(Energy-Dispersive X-ray Spectroscopy, EDS)及掃瞄式電子顯微鏡(Scanning Electronic Microscope, SEM)進行成份組成及表觀分析。
SEM及EDS分析結果顯示,煉鋼廠之四個主要製程所排放的粒徑大小為煉焦爐>燒結爐>高爐>轉爐,高爐爐渣粒徑大於高爐濾袋集塵灰;高爐與轉爐所產生之濾袋集塵灰及燃煤鍋爐產生之靜電集塵灰,其表觀顯示皆為大小不規則的細小圓形顆粒聚集體。煉焦爐之濾袋集塵灰的元素組成重量百分比以Si及Fe分別約佔37及55%最高,燒結爐以Fe約佔67%最高,高爐及轉爐以Fe分別約佔97及98%最高,高爐爐渣以Ca成分約佔64%最高,其Fe成分含量為煉焦爐<燒結爐<高爐<轉爐,顯示Fe含量隨著煉鐵過程逐漸增加。
電弧爐(B廠)之底灰為大小不一的有稜角之塊狀顆粒,以Fe約佔 28%最高,其次為Si、Mn、Mg、Ca等,濾袋集塵灰為表面有結晶之顆粒,以Ca約佔43%最高,其次為Fe、Si等。電弧爐(C廠)之底灰為微細蜂巢形狀顆粒,以Fe約佔54 %最高,其次為Ca等,濾袋集塵灰為細微顆粒,以Zn約佔41%最高,其次為Fe等;結果顯示電弧爐B及C廠之外觀與粒徑都不同,其原因是每家電弧爐廠所使用原物料不同,因此其燃燒後排放之粒狀物化學成分相異。
都市廢棄物焚化廠(MSWI)之底灰為為粗塊狀顆粒,飛灰為細微顆粒,濾袋集塵灰為蜂巢形狀微細顆粒。底灰及飛灰以Ca分別約佔72及47%最高,Cl分別約佔12及17 %其次;濾袋集塵灰以Cl約佔35%最高,Ca約佔28%其次,其Ca成分含量為底灰>飛灰>濾袋集塵灰,Cl成分含量為濾袋集塵灰>飛灰>爐渣,其原因為焚化過程中加入Ca(OH)2以去除HCl及SOx所致。
發電廠燃煤鍋爐之底灰為不規則形狀結晶,靜電集塵灰為大小不一之細微球形顆粒;燃油鍋爐靜電集塵灰及飛灰皆為細微顆粒;燃煤鍋爐靜電集塵灰粒徑大於燃油鍋爐靜電集塵灰。燃煤鍋爐底灰以Ca約佔23 %最高,其次為Fe、Rb、Si、Al等,靜電集塵灰以Si約佔29 %最高,其次為Ca、Fe、Al、Mg、K等;燃油鍋爐靜電集塵灰以S約佔86 %最高,其次為Ni、Si、Fe等,飛灰以Ni約佔24 %最高,其次為Al、V、Si、Fe等。鍋爐所使用燃料有燃煤及燃油,故其燃燒後排放之微粒表觀及化學成分相異。
結果顯示,各種製程所排放之粒狀物質的粒徑、表觀及化學組成都不相同,故可作為比對研判各粒狀污染物來源之參考。
Abstract
Burning joss paper and incense is a significant Taoist ceremonial practice in Asian countries such as Taiwan and China. The burning of joss paper has been demonstrated to significantly create particulate matters (PM) and to cause air pollution problems. PM in the atmosphere is among the primary air pollutants, and their sources are factories, vehicles, construction fields, combustion, vehicle exhaust dust, and aerosols derived from photochemical reactions. Numerous sources of environmental PM exist. Thus, the ability to rapidly determine the particulate type and source to adjust the controls and develop policies is an important issue for air quality management.
This dissertation consists of two parts on the particulate emission control and characteristic identification. In the first part, we study investigates feasible options of air pollution control devices (APCD) for joss paper furnaces in temples, and used a 40 kg/hr joss paper furnace for testing. This paper examined particulate removal efficiencies of two options: a bag house (capacity 30 m3/min at 108 ℃) and a wet scrubber (capacity 40 m3/min at 150 ℃).
The results indicate that PM in the diluted flue gas at the bag-house inlet were 76.6 ± 32.7 mg/Nm3 (average ± standard deviation), and those at the outlet of the bag-house could be reduced to as low as 0.55 ± 1.28 mg/Nm3. An average PM removal efficiency of 99.3 % could be obtained with a filtration speed of approximately 2.0 m/min evaluated at 108 ℃. The wet scrubber removed approximately 70 % of PM, with scrubbing intensities higher than 4.0 L/m2.s across the scrubber cross-section. For the duration of the experiment, no visual white smoke (water mist) was observed at the exit of the wet scrubber with a combustion rate of 16 kg/hr of joss paper, and the scrubbing water temperature was automatically sustained at lower than 61 ℃. The study concluded that both bag filtration and wet scrubbing are suitable techniques to control particulate emission from joss paper furnaces in Taiwanese temples. The bag filtration technique, while achieving higher efficiencies than the wet scrubbing technique, requires more space and cost.
Examinations of bottom and fly ashes of combusted joss paper with X-ray diffraction (XRD) revealed the presence of calcium oxide in the fly ash, while certain metals were found in the bottom ash.
The second part aimed at the investigates surface characteristics of airborne PM sampled from air pollution control devices of a number of industrial operations. The PM sources selected for this study comprise the following operations or processes: a coke oven, iron ore sintering furnace, blast furnace, and basic oxygen furnace from an integrated steelmaking plant; electric arc furnaces of two secondary steelmaking plants; a municipal solids waste incinerator; two oil-fired boilers; and a coal-fired power plant boiler. The collected PM samples were analyzed using a scanning electronic microscope (SEM) and energy-dispersive X-ray spectroscope (EDS) to determine their chemical composition and surface characteristics. Results for each PM sample regarding size, surface characteristics, and chemical compositions can be used to trace the related emission industrial sources.
目次 Table of Contents
LIST OF CONTENTS
論文審定書 …………………………………………………… ii
謝誌 …………………………………………………………… iii
中文摘要 ……………………………………………………… iv
ABSTRACT ………………………………………………....... vii
LIST OF CONTENTS ………………………………………... x
LIST OF FIGURES …………………………………………… xii
LIST OF TABLES ……………………………………………... xv
CHAPTER 1 INTRODUCTION
1.1 Background ………………………………………………… 1
1.2 Objects of Research ………………………………………. 2
1.3 Organization of Dissertation ……………………………… 3
CHAPTER 2 LITERATURE SURVEY
2.1 Joss Paper Furnaces ……………………………………… 4
2.2 PM Emitted from Industrial Sources ……………………...7
CHAPTER 3 Removal of Particulates from Emissions of
Joss Paper Furnaces
3.1 Introduction …………………………………………………13
3.2 Materials and Methods …………………………………… 14
3.2.1 Bag House ……………………………………………16
3.2.2 Wet Scrubber ……………………………………......16
3.2.3 Operation ……………………………………………. 18
3.2.4 Analytical ……………………………………………..19
3.3 Results and Discussion …………………………………...20
3.3.1 Bag-house Filtration …………………………………20
3.3.2 Wet scrubbing …………………………………….....27
3.4 Conclusions and Suggestion …………………………….33
CHAPTER 4 Surface Characteristics of Particulate
Matter collected from Industrial Sources
4.1 Introduction …………………………………………………34
4.2 Materials and Methods ……………………………………35
4.2.1 Sample Collection and Storage ……………………35
4.2.2 Sample Analysis ……………………………………. 36
4.3 Results and Discussion …………………………………...38
4.4 Conclusions and Suggestion …………………………….57
REFERENCES ………………………………………………...58
作者簡歷 ……………………………………………………… 66
參考文獻 References
Abielaala, L., Aouad, H., Mesnaoui, M., Musso, J.A. (2011). Characterization and vitrification of fly ashes from incineration of waste of infectious risk cares (WIRC). Sustainable Environment Research. 21, 195-201.
Bandyopadhyay, A., Biswas, M.N. (2007). Fly ash scrubbing in a novel dual flow scrubber. Waste Management. 30, 733-733.
Chen, P.L., Hsu, T.H., Lee, I.H., Chiang, M.Y. (2001). Observations of particulates deposited on plant leaves. The Plant Protection Society of the Republic of China. 43, 227-234.
Cao, Y., Cheng, C.M., Chen, C.W., Liu, M.C., Wang, C.W., Pan, W.P. (2008). Abatement of mercury emissions in the coal combustion process equipped with a Fabric Filter Baghouse. Fuel. 87, 3322-3330.
Chiu, J.C., Shen, Y.H., Li, H.W., Lin, L.F., Wang, L.C., Chang-Chien, G.P. (2011). Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from an electric arc furnace, secondary aluminum smelter, crematory and joss paper incinerators. Aerosol and Air Quality Research. 11, 13–20.
Choosong, T., Hata, M., Furuuchi, M. (2010). Workplace environment and personal exposure of PM and PAHs to workers in natural rubber sheet factories contaminated by wood burning smoke. Aerosol and Air Quality Research. 10, 8–21.
Chen, L. (2010). Grey and neural network prediction of concrete compressive strength using physical properties of electric arc furnace oxidizing slag. Sustainable Environment Research. 20, 189-194.
Ebert, F., Buttner, H. (1996). Recent investigations with nozzle scrubbers. Powder Technology. 86, 31-36.
Fang, G.C., Chang, C.N., Chu, C.C., Wu, Y.S., Fu, P.P.C., Chang, S.C., Yang, I.L. (2003). Fine (PM2.5), coarse (PM2.5-10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan. Chemosphere. 51, 983-991.
Gieré, R., Blackford, M., Smith, K. (2006). TEM study of PM2.5 emitted from coal and tire combustion in a thermal power station. Environmental Science and Technology. 40, 6235-6240.
Glikson, M., Simpson, R., Polach, H., Taylor, J. (1988). Microscopical TSP studies comparing a city centre and suburban sites in Canberra, Australia. Atmospheric Environment. 22, 1745-1758.
Gabites, J.R., Abrahamson, J., Winchester, J.A. (2008). Design of baghouses for fines collection in milk powder plants. Powder Technology. 187, 46-52.
Guerriero, E., Guarnieri, A., Mosca, S., Rossetti, G., Rotatori, M. (2009). PCDD/Fs removal efficiency by electrostatic precipitator and wetfine scrubber in an iron ore sintering plant. Journal of Hazardous Materials. 172, 1498-1504.
Hsu, T.H., Lee, I.H., Chen, P.L., Chiang, M.Y. (2003). Energy-dispersive X-ray microanalysis of particulates from different polluting sources and leaf surface depositions. The Plant Protection Society of the Republic of China. 45, 305-320.
Ho, C.T. (2004). Physicochemical properties and exposure assessment of suspended particles in steel plants. Master Thesis, Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan.
Hrdlicka, J.A., Seames, W.S., Mann, M.D., Muggli, D.S., Horabik, C.A. (2008). Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters. Environmental Science and Technology. 42, 6677-6682.
Hu, M.T., Chen, S.J., Huang, K.L., Lin, Y.C., Chang-Chien, G.P., Tsai, J.H. (2009). Characterization of polychlorinated dibenzo-p-dioxin/dibenzofuran emissions from joss paper burned in a furnace with air pollution control devices. Science of The Total Environment. 407, 3290-3294.
Huang, W.J., Lee, C.C., Milla, O.V. (2010). Morphology and mobility studies on municipal solid waste incineration baghouse ashes. Sustainable Environment Research. 20, 127-131.
Israel National Coal Ash Board (NCAB), (2012). The Grey Resource, Tel-Aviv, Israel. http://www.coal-ash.co.il/english/index.html
Lave, L.B., Seskin, E.P. (1970). Air pollution and human health. Science.
169,723-733.
Lave, L.B., Seskin, E.P. (1973). An analysis for the association between US mortality and air pollution. Journal of The American Statistical Association. 68, 284-290.
Lo, Y.Y., Wang, I.C., Lee, M.L., Chou, M.S. (2011). Removal of particulates from emissions of joss paper furnaces. Aerosol and Air Quality Research. 11, 429-436.
Laitinen, A., Vaaraslahti, K., Keskinen, J. (2000). Preformed spray scrubber-Comparison of precipitation mechanisms for charged fine particles. Journal of Aerosol Science. 31, S158-S159.
Lau, O.W., Luk, S.F. (2001). Leaves of Bauhinia blakeana as indicators of atmospheric pollution in Hong Kong. Atmospheric Environment. 35, 3113-3120.
Li, H., Han, Z., Cheng, T., Du, H., King, L., Chen, J., Zhang, R., Wang, W. (2010). Agricultural fire impacts on the air quality of Shanghai during summer harvest time. Aerosol and Air Quality Research. 10, 95–101.
Lin, M.D., Rau, J.Y., Tseng, H.H., Wey, M.Y., Chu, C.W., Lin, Y.H., Wei, M.C., Lee, C.H. (2008). Characterizing PAH emission concentrations in ambient air during a large-scale joss paper open-burning event. Journal of Hazardous Materials. 156, 223-229.
Lin, W.Y., Wu, Y.L., Tu, L.K., Wang, L.C., Lu, X. (2010). The emission and distribution of PCDD/Fs in municipal solid waste incinerators and coal-fired power plant. Aerosol and Air Quality Research. 10, 519–532.
Lo, L.M., Chen, D.R., Pui, D.Y.H. (2010). Experimental study of pleated fabric cartridges in a pulse-jet cleaned dust collector. Powder Technology. 197, 141-149.
Lin, K.S., Cheng, H.W., Chen, W.R., Wu, J.F. (2010). Synthesis, characterization and application of anatase- typed titania nanoparticles. Sustainable Environment Research. 20, 69-76.
Lee, Y.C., Lien, C.T., Chen, C.W., Huang, S.H., Chen, C.C., Kuo, P.C., Syu, J.Y., Chang, Y.Y., Huang, Y.M., Lin, W.Y. (2010). Generation and characterization of sintered ZnO nanoparticles. Sustainable Environment Research. 20, 397-402.
Ning, Z., Sioutas, C. (2010). Atmospheric processes influencing aerosols generated by combustion and the inference of their impact on public exposure: a review. Aerosol and Air Quality Research. 10, 43–58.
Noh, K.C., Park, J.H., Jung, Y.K., Yi, S., Hwang, J. (2011). Characteristics of submicron-sized aerosol filtration and pressure drop of an electret filter installed in an air diffuser in a residential apartment unit. Aerosol and Air Quality Research. 11, 80–89.
Mazumder, M.K. (1997). Aerodynamic properties and respiratory deposition characteristics of formaldehyde impregnated medium-density fiberboard particles. Particulate Science and Technology. 15, 37-49.
Milner, S. (2007). Elemental analysis of blast furnace slag. Steel Times International July/August, 47-48.
Oluwadayo, O.S., Dorrit, E.J., Colin, R.W., Stephen, F.F. (2011). Mineral and trace element composition of the Lokpanta oil shale in the lower Benue Trough, Nigeria. Fuel. 90, 2843-2849.
Park, Y.D., Park, C.S., Park, J.W. (2010). Interaction between iron reducing bacteria and nano-scale zero valent iron. Sustainable Environment Research. 20, 233-238.
Pina, A.A., Villasenor, G.T., Fernandez, M.M., Kudra, A.L., Ramos, R.L. (2000). Scanning electron microscope and statistical analysis of suspended heavy metal particles in San Luis Potosi, Mexico. Atmospheric Environment. 34, 4103-4112.
Pope, C,A., III, Thun, M,J., Namboodiri, M.M., Dockery, D.W., Evans, J.S. Speizer, F.E. (1995). Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. American Journal of Respiratory and Critical Care Medicine. 151, 669-674.
Peukert, W., Wadenpohl, C. (2001). Industrial separation of fine particles with difficult dust properties. Powder Technology. 118, 136-148.
Rau, J.Y., Tseng, H.H., Lin, M.D., Wey, M.Y., Lin, Y.H., Chu, C.W., Lee, C.H. (2008). Characterization of polycyclic aromatic hydrocarbon emission from open burning of joss paper. Atmospheric Environment. 42, 1692-1701.
Rao, M.N., Rao, H.V.N. (1989). Control of air pollution by equipment, in Air Pollution, Tada McGraw-Hill Publishing Co. Ltd., New Delhi, 167-186.
Ruttanachot, C., Tirawanichakul, Y., Tekasakul, P. (2011). Application of electrostatic precipitator in collection of smoke aerosol particles from wood combustion. Aerosol and Air Quality Research. 11, 90–98.
Rodriguez, I., Gali, S., Marcos, C. (2009). Atmospheric inorganic aerosol of a non-industrial city in the centre of an industrial region of the north of Spain, and its possible influence on the climate on a regional scale. Environmental Geology. 56, 1551-1561.
Shin, Y.H., Tso, C.P., Tung, L.Y. (2010). Rapid degradation of Methyl Orange with nanoscale zerovalent iron particles. Sustainable Environment Research. 20, 137-143.
Ta, W., Xiao, Z., Qu, J., Yang, G., Wang, T. (2003). Characteristics of dust particles from the desert/Gobi area of northwestern China during dust-storm periods. Environmental Geology. 43, 667-679.
Wu, Y.L., Li, H.W., Chien, C.H., Lai, Y.C., Wang, L.C. (2010). Monitoring and identification of polychlorinated dibenzo-p-dioxins and dibenzofurans in the ambient central Taiwan. Aerosol and Air Quality Research. 10, 463–471.
Wang, K.S., Lin, K.L., Huang, Z.Q. (2001). Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement. Cement and Concrete Research. 31, 97-103.
Yang, H.H., Jung, R.C., Wang, Y.F., Hsieh, L.T. (2005). Polycyclic aromatic hydrocarbon emissions from joss paper furnaces. Atmospheric Environment. 39, 3305-3312.
Yang, W.H., Lee, Y.C., Zwang, F.C., Don, S.C. (2001). Investigation of waste gas pollution from joss paper incineration and the associated pollution control. Published by the Bureau of Citizen Affair Management, Taipei City Government,Taiwan.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code