Responsive image
博碩士論文 etd-0627114-133930 詳細資訊
Title page for etd-0627114-133930
論文名稱
Title
利用奈米碳管或磁性離子交換樹脂吸附過氯酸鹽之研究
Adsorption of perchlorate using carbon nanotubes and MIEX
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-18
繳交日期
Date of Submission
2014-07-27
關鍵字
Keywords
過氯酸鹽、模式解析、磁性離子交換樹脂、奈米碳管、吸附
carbon nanotubes, magnetic ion-exchange (MIEX), model analysis, adsorption, perchlorate
統計
Statistics
本論文已被瀏覽 5667 次,被下載 791
The thesis/dissertation has been browsed 5667 times, has been downloaded 791 times.
中文摘要
台灣南部的幾座淨水場之處理程序已由傳統處理提升為高級處理方法。因為在南台灣原水水源中近年來有發現微量過氯酸鹽,而吸附為理想有效的處理方式之一。
本研究利用奈米碳管及磁性離子交換樹脂來吸附水中過氯酸鹽,探討過氯酸鹽去除效率及影響因子之效應。市面上較新穎的吸附劑很多包含本文將以奈米碳管及磁性離子交換樹脂二種吸附劑,進行平衡吸附試驗及依模式評估,以了解過氯酸鹽的吸附特性與行為。
研究結果顯示,奈米碳管及磁性離子交換樹脂對過氯酸鹽的吸附行為主要受到pH、離子強度和溫度的影響。動力及平衡吸附實驗之吸附容量以模式解析,奈米碳管與磁性離子交換樹脂約在8小時可達到平衡,吸附容量隨著過氯酸鹽濃度增加及離子強度減少而增加,最佳吸附模式選用包含Modified Freundlich equation、Pseudo-1st-order equation、Pseudo-2nd-order equation三種模式。奈米碳管對過氯酸鹽的吸附結果依循Modified Freundlich equation模式為最佳,磁性離子交換樹脂對過氯酸鹽的吸附結果依循Pseudo-1st-order(PFO)模式為最佳。
平衡吸附試驗顯示,過氯酸鹽在低pH值時有利於二種吸附劑對過氯酸鹽的吸附;過氯酸鹽等溫吸附結果皆可適用Langmuir及Freundlich模式,隨著溫度遞減吸附量及吸附之親和力越大。等溫吸附實驗在恆溫5℃~45℃下,等溫平衡吸附試驗結果顯示,奈米碳管的最大吸附容量為10.03~13.64mg/g,而磁性離子交換樹脂(MIEX)吸附量為70.15 ~ 82.01 mg/g,而對照之粒狀活性碳(GAC)最大吸附容量為28.21~33.87 mg/g,在低pH值、低離子強度及低溫狀態等條件下是有利於奈米碳管、磁性離子交換樹脂(MIEX)去除過氯酸鹽。
Abstract
Several water treatment plants in Southern Taiwan have enhancedtheir traditional treatment processes. Adsorption is an ideal and effective water treatment method because trace amounts of perchlorate have been detectedin the raw water of Southern Taiwan in recent years.
This study adopted carbon nanotubes (CNTs) and magnetic ion-exchange (MIEX) resins to adsorb the perchlorate in water for investigating the efficiency of perchlorate removal and the effects of relevant factors. CNTs and MIEX resins are among the multiple types of novel adsorbent available in the market. By using the two adsorbents for conducting equilibrium adsorption tests and model assessment, this study ascertained the adsorption characteristics and behavior of perchlorate.
The results indicated that the adsorption behavior of CNTs and MIEX resins on perchlorate was mainly influenced by pH value, ionic strength, and temperature. The adsorption capacity in the dynamic and equilibrium adsorption experiments was analyzed usingadsorption models. The CNTs and MIEX resins achieved equilibrium in approximately 8h, and the adsorption capacity increased astheperchlorate concentration increased and ionic strength decreased. The models of modified Freundlich equation, pseudo-first-order equation, and pseudo-second-order equation were adopted for determining the optimal adsorption model. The results revealed that the modified Freundlich equation was optimal for the perchlorate adsorption by CNTs, whereas the pseudo-first-order equation was optimal for the perchlorate adsorption by MIEX resins.
According to the results of the equilibrium adsorption tests,perchlorate at low pH was favorable for the performance of the two adsorbents. The isothermal adsorption results of perchlorate, in which adsorptioncapability and affinity increased as thetemperaturedecreased, were applicable to both the Langmuir and the Freundlich models. In a thermostatic environment of 5–45 °C, the results of isothermal equilibrium adsorption tests indicated that the maximumadsorption capacity of the CNTs,MIEX resins,and the control, granular activated carbon,was 10.03–13.64mg/g, 70.15–82.01 mg/g, and28.21–33.87 mg/g, respectively. Therefore, low pH values, low ionic strength, and low temperature are favorable for CNTs and MIEX resins inremoving perchlorate.
目次 Table of Contents
誌謝 i
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 xii
表目錄 xiv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究內容 3
第二章 文獻回顧 4
2.1 水源及流域 4
2.1.1 高屏溪流域 4
2.1.2 水源保護區 6
2.1.3 鳳山水庫位置 8
2.2 鳳山淨水廠水處理現況 8
2.2.1 傳統處理 9
2.2.2 分水井 9
2.2.3 量水堰 10
2.2.4 膠凝沉澱池 14
2.2.5 快濾池 14
2.3 高級處理 15
2.3.1 臭氧接觸池 16
2.3.2 結晶軟化槽 19
2.3.3 粒狀活性碳生物濾池 20
2.4 活性碳製造原理 20
2.4.1 活性碳的分類 21
2.4.2 活性碳的吸附行為 21
2.5 原水中污染物過氯酸鹽 22
2.5.1 天然來源 22
2.5.2 人為來源 23
2.5.2.1 軍事 23
2.5.2.2 節慶 23
2.5.2.3 農業 23
2.5.2.4 天氣變遷 24
2.5.2.5 實驗室 24
2.5.2.6 其它 25
2.5.3 過氯酸鹽存在狀態 25
2.6 整治 26
2.7 吸附理論 28
2.7.1 物理吸附 28
2.7.2 化學吸附 28
2.7.3 交換性吸附 29
2.7.4 特定吸附 29
2.7.5 非特定吸附 29
2.8 吸附模式 30
2.8.1 等溫吸附方程式 30
2.8.1.1 Langmuir 等溫吸附模式 31
2.8.1.2 Freundlich 等溫吸附模式 32
2.8.2 動力吸附模式 33
2.8.2.1 一階動力模式 33
2.8.2.2 二階動力模式 33
2.8.3 吸附熱力學 34
2.8.4 自由能 35
2.8.5 離子強度對吸附反應之影響 37
2.8.6 影響吸附能力的因素 39
2.8.6.1 吸附劑的特性 39
2.8.6.2 吸附質特性 40
2.8.6.3 環境水質條件 40
2.9 奈米碳管的應用 41
2.9.1 碳纖維 41
2.9.2 奈米碳管的生長機制 43
2.9.3 奈米碳管的合成方式 43
2.9.3.1 觸媒輔助法 44
2.9.3.1.1 電弧放電法或電弧蒸法 44
2.9.3.1.2 雷射削剝催化劑法 44
2.9.3.1.3 化學氣相沉積法 45
2.9.3.2 無觸媒輔助法 45
2.9.3.2.1 CuO奈米粒醇類加熱法 45
2.9.3.2.2 奈米金屬粒雷射蒸發法 45
2.9.3.2.3 球磨法 46
2.9.3.2.4 化學還原法 46
2.9.3.2.5 蒸發-冷凝法 46
2.9.3.2.6 溶膠-凝膠法 46
2.9.4 奈米碳管的主要結構 47
2.9.4.1 單壁奈米碳管(single-walled carbon nanotubes,SWCNTs) 48
2.9.4.2 多壁奈米碳管(mutli-walled carbon nanotubes, MWCNTs) 48
2.9.4.3 奈米碳管其它結構 49
2.9.5 奈米碳管改質 51
2.9.5.1 化學氧化法 51
2.9.5.2 層析法 52
2.9.5.3 過濾法 52
2.9.5.4 微波加熱法 52
2.9.6 奈米碳管現代技術的應用 53
2.9.7 奈米碳管在環境工程吸附技術的應用 54
2.9.7.1 奈米碳管吸附無機污染物 54
2.9.7.1.1 利用奈米碳管吸附鉛(Pb+2) 54
2.9.7.1.2 奈米碳管利用表面氧化後以吸附水中鎘離子(Cd+2) 55
2.9.7.1.3 利用多壁奈米碳管競爭性吸附水中Pb+2、Cu+2、Cb+2 55
2.9.7.1.4 奈米碳管吸附無機污染物的比較 56
2.9.7.2 奈米碳管去除有機污染物 56
2.9.7.2.1 多壁奈米碳管吸附戴奧辛 56
2.9.7.2.2 複合多壁奈米碳管(Al2O3/CNTs)吸附水中氟化物 57
2.9.7.2.3 序列式奈米碳管吸附水中氟化物 57
2.9.7.2.4 奈米碳管吸附1,2二氯苯 58
2.9.7.2.5 奈米碳管吸附三鹵甲烷 58
2.10 磁性離子交換樹脂(MIEX)的種類與應用 59
2.10.1 磁性離子交換樹脂 59
2.10.1.1 膠凝型樹脂 59
2.10.1.2 多孔型樹脂 59
2.10.1.3 離子交換樹脂 60
2.10.1.3.1 強酸性離子交換樹脂 60
2.10.1.3.2 弱酸性離子交換樹脂 60
2.10.1.3.3 強鹼性離子交換樹脂 60
2.10.1.3.4 弱鹼性離子交換樹脂 61
2.10.1.3.5 磁性離子交換樹脂 61
2.10.2 磁性離子交換樹脂在環境工程吸附技術的應用 61
2.10.2.1 利用MIEX 吸附天然有機物 62
2.10.2.2 樹脂吸附原水中的溴化物 62
2.10.2.3 利用MIEX對過氯酸鹽的吸附特性 62
2.10.2.4 運用MIEX樹脂對磷酸鹽的吸附特性 63
2.10.2.5 利用MIEX吸附原水中2,4 - 二氯苯氧乙酸 63
2.11 其它吸附劑 63
第三章 研究方法 65
3.1 研究流程規劃 65
3.2 單壁奈米碳管及MIEX的準備 67
3.2.1 單壁奈米碳管準備 67
3.2.2 磁性離子交換樹脂 69
3.3 實驗設備 70
3.4 實驗藥品 71
3.5 過氯酸鹽分析方法 71
3.6 過氯酸鹽 72
3.6.1 隨時間變化的動力吸附實驗 72
3.6.2 pH值的影響 72
3.6.3 溫度的影響 73
3.7 過氯酸鹽檢量線配製 73
第四章 結果與討論 74
4.1 奈米碳管吸附過氯酸鹽 74
4.1.1 吸附平衡動力實驗 74
4.1.2 離子強度對過氯酸鹽吸附的影響 75
4.1.3 不同腐植酸濃度奈米碳管對腐植酸吸附量之影響 77
4.1.4 等溫吸附實驗 79
4.1.4.1 pH值的影響 79
4.1.4.2 不同溫度的影響 80
4.1.5 熱力學之探討 82
4.2 磁性離子交換樹脂吸附模式 83
4.2.1 吸附平衡動力實驗 83
4.2.2 不同離子強度下MIEX對過氯酸鹽吸附的影響 84
4.2.3 不同腐植酸濃度之影響 86
4.2.4 等溫吸附實驗 88
4.2.4.1 pH值的影響 88
4.2.4.2 不同溫度的影響 89
4.2.5 吸附熱力學之探討 91
4.3 吸附劑之比較 92
4.3.1 吸附平衡動力實驗之比較 92
4.3.2 離子強度對過氯酸鹽吸附的影響之比較 93
4.3.3 不同腐植酸濃度影響的比較 95
4.3.4 pH值對過氯酸鹽吸附的比較 97
4.3.5 溫度對過氯酸鹽吸附的比較 98
4.3.6 熱力學之比較 99
第五章 結論與建議 100
5.1 奈米碳管吸附原水中過氯酸鹽 100
5.2 磁性離子交換樹脂 100
5.3 建議 101
學位考試口試委員意見修正書 108
參考文獻 References
Craig Steinmaus, MarkD.Miller., et al. Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007–08, Environmental Research.2013,123, 17–24.
Greer, M. A., et al.Health effect assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodide uptake in humans, Environ. Health Perspect.2002, 110, 927-937.
USEPA, Public Health Goal for Chemicals in Drinking Water, Perchlorate, Office of Environmental Health Hazard Assessment, Environmental Protection Agency. 2004.
Zhiquan Yang, Ou Xiao, Bing Chen, Lixiang Zhang, Hongguo Zhang, Xiaojun Niu, Shaoqi Zhou. Perchlorate adsorption from aqueous solution oninorganic-pillaredbentonites. Chemical Engineering Journal.2013, 223, 31–39.
Parette, R., Cannon, F.S., Weeks, K. Removing low ppb level perchlorate, RDX,and HMX from groundwater with cetyltrimethylammonium chloride (CTAC) preloadedactivated carbon. Water Research.2005, 39, 4683–4692.
Srinivasan,R., Sorial, G.A. Treatment of perchlorate in drinking water: a criticalreview. Separation and Purification Technology.2009, 69, 7–21.
Komarneni,S., Kim, J.Y., et al. As-synthesized MCM-41 silica:new adsorbent for perchlorate. Journal of Porous Materials.2010, 17, 651–656.
Kim, J.Y., Komarneni, S., Parette, R., Cannon, F.S., Katsuki, H. Perchlorate uptakeby synthetic layered double hydroxides and organo-clay minerals. Applied ClayScience.2011, 51, 158–164.
Baidas, S., Gao, B., Meng, X. Perchlorate removal by quaternary amine modifiedreed. Journal of Hazardous Materials.2011, 189, 54–61.
Yanhua Xie, Shiyu Li, Guangli Liu, Jun Wangb, Ke Wub. Equilibrium, kinetic and thermodynamic studies on perchlorate adsorptionby cross-linked quaternary chitosan. Chemical Engineering Journal.2012, 192, 269–275.
E. Kumar, A. Bhatnagar, J.A. Choi, U. Kumar, B. Min, Y. Kim, H. Song, K.J. Paeng,Y.M. Jung, R.A.I. Abou-Shanab, B.H. Jeon. Perchlorate removal from aqueoussolutions by granular ferric hydroxide (GFH), Chem. Eng. J. 2010, 159, 84–90.
H.L. Lien, C.C. Yu, Y.C. Lee. Perchlorate removal by acidified zero-valentaluminum and aluminum hydroxide, Chemosphere. 2010, 80, 888–893.
Yanhua Xie, Shiyu Li, Fei Wang, Guangli Liu. Removal of perchlorate from aqueous solution using protonated cross-linkedchitosan. Chemical Engineering Journal.2010, 156, 56–6314.
Cedergren M. I., Selbing A. J., Löfman O., Källen B. A. J., “Chlorination byproducts and nitrate in drinking water and risk for congenital cardiac defects”, Environmental Research, vol. 89, pp. 124-130, 2002.
Dodds L., King W., Woolcott C., Pole J., “Trihalomethanes in public water supplies and adverse birth outcomes”, Epidemiology, vol. 10, pp. 233-237, 1999.
Attias L., Contu A., Loizzo A., Massiglia M., Valente P., “Trihalomethanes in Drinking Water and Cancer:Risk Assessment and Integrated Evaluation of Available Data, in Animals and Humans”, Science of the Total Environment, vol. 171, pp. 61-68, 1995.。
Yang K., Xing B., “Adsorption of fulvic acid by carbon nanotubes from water”, Environmental Pollution, vol. 157, pp. 1095-1100, 2009.
Van der Kooij, D., Hijnen, W.A.M. and Kruithof, J.C., (1989), “The effect of ozonation, biological filtration and distribution on the concentration of easily assimilable organic carbon (AOC) in drinking water.” Ozone: Science and Engineering, 11, pp. 297-311.
Wang S.G., Sun X.F., Liu X.W., Gong W.X., Gao B.Y., Bao N., “Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanisms”, Chemical Engineering Journal, vol. 142, pp. 239-247, 2008.
Van Der Kooij, D. and Veenendaal, H.R., (1995), “Determination of the concentration of easily assimilable organic carbon (AOC) in drinking water with growth measurements using pure bacterial cultures.” SWE 95.002, KIWA, Nieuwegein, Netherlands.
Van Der Kooij, D., (1990), “Assimilable organic carbon (AOC) in drinking water.” in Drinking Water Microbiology, G. A. Mcfeter, ed., Springer-Verlag, New York.
Anna, S.Krystyna, P, (2007), Adsorption of heavy metal ions with carbon nanotubes. Separation andPurification Technology 58(1), 49-52.
Boyer, T. H., & Singer, P. C. (2005). Bench-scale testing of a magnetic ion exchange resin for removal of disinfection by-product precursors. Water Research, 39(7), 1265-1276.
Boyer, T. H., & Singer, P. C. (2006). A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions.Water research, 40(15), 2865-2876.
Cox, A. R., Mogford, R., Vincent, B. and Harley, S., (2001), The effect of polymer chain architecture on the adsorption properties of derivatised polyisobutylenes at the carbon:n-heptane interface, Colloids and Surfaces A:Physicochemical and Engineering, 181(1), 205-213.
Dean, K. E., et al., (2004), Development of fresh water-quality criteria for perchlorate, Environ. Toxicol. Chem. 23, 1441-1451.
Ding, L., Deng, H., Wu, C., & Han, X. (2012). Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin. Chemical Engineering Journal, 181, 360-370.
Ding, L., Wu, C., Deng, H., & Zhang, X. (2012). Adsorptive characteristics of phosphate from aqueous solutions by MIEX resin. Journal of colloid and interface science, 376(1), 224-232.
Dresselhaus. M.S, Dresselhans. G, Saito. R., (1995), Physics of carbon nanotubes, Carbon 33, 883-891.
Eva Kumara et al., (2010), Perchlorate removal from aqueous solutions by granular ferric hydroxide (GFH), Chemical Engineering Journal 159, 84–90.
Fanning, J.C., (1999), The chemical reduction of nitrate in aqueous solution, Coordination chemistry reviews 199, 159-179.
Greer, M. A., et al., (2002), Health effect assessment for environmental perchlorate contamination: The dose response for inhibition of thyroidal radioiodide uptake in humans, Environ. Health Perspect, 110, 927-937.
Hjeresen, D et al., (2004), Los Alamos National Laboratory Perchlorate Issues Update.
Ho, Y.S.McKay, G., (1999), Pseudo-second order model for sorption processes. Process Biochemistry 34(5), 451-465.
Hsu, S., & Singer, P. C. (2010). Removal of bromide and natural organic matter by anion exchange. Water research, 44(7), 2133-2140.
Huling, S. G et al., (2005) “Fenton-drivenchemical regeneration of MTBE-spent GAC,” Water Research 39, 2145-2153.
ITRC, In Situ Bioremediation in GW-Perchlorate (2002).
Journet, C.Bernier, P., (1998), Production of carbon nanotubes. Applied Physics A: Materials Science and Processing 67(1), 1-9
Lu, C. S., and Chiu, H. T., (2006), “Adsorption of zinc (II) from water with purified carbon nanotubes,” Chemical Engineering Science 61, 1138- 1145
Lu, C.S.Su, F.S, (2007), Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology 58(1), 113-121.
Orris, G. J., (2004), Perchlorate in Natural Minerals and Materials, USGS Quarterly Report, April.
Salem Baidasa, Baoyu Gaob, Xiaoguang Menga, (2011), Perchlorate removal by quaternary amine modified reed, Journal of Hazardous Materials 189, 54–61.
Tang, Y., Liang, S., Guo, H., You, H., Gao, N., & Yu, S. (2013). Adsorptive characteristics of perchlorate from aqueous solutions by MIEX resin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 417, 26-31.
Urbansky, E. T et al., (2001), Survey of fertilizers and related materials for perchlorate (ClO4-) final report, EPA national risk management research laboratory.
Wu et al., (2010) Removal of perchlorate contaminants by calcined Zn/Al layered double hydroxides: Equilibrium, kinetics, and column studies, Desalination 256, 136–140.
Y. Xie, S. Li, F. Wang, G. Liu, (2010), Removal of perchlorate from aqueous solution using protonated cross-linked chitosan, Chem. Eng. J. 156, 56–63.
Zhang, X., Lu, X., Li, S., Zhong, M., Shi, X., Luo, G., & Ding, L. (2014). Investigation of 2, 4-dichlorophenoxyacetic acid adsorption onto MIEX resin: Optimization using response surface methodology. Journal of the Taiwan Institute of Chemical Engineers.
成會明,(2004),奈米碳管,五南出版社,台北。
郭正次、朝春光,奈米結構材料科學,全華圖書,台北,2004。
黃韋翔,(2009),奈米碳管特性對於原水中黃酸吸附特性之研究,國立中山大學,環境工程研究所碩士論文。
劉展良,(2005),利用微波電漿化學氣相沉積法成長多壁奈米碳管及其電性之研究,國立中央大學,機械工程研究所碩士論文。
陳信良,聚胺脂/奈米碳管奈米複合材料合成與物性之研究,雲林科技大學化學工程研究所,碩士論文,2005。
蔡正國,複合奈米碳管吸附水溶重金屬污染物之應用研究,雲林科技大學環境與安全衛生工程系,碩士論文,2005。
譚仁豪,微波化學程序改質之奈米碳管吸附水中鎘離子之研究,雲林科技大學環境與安全衛生工程系,碩士論文,2008。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code